East Pong of the Roaring River 2004 Annual Monitoring Report

- Delivered to: NCDENR/Ecosystem Enhancement Program 1619 Mail Service Center Raleigh, NC 27699-1619
- Prepared by: Biological & Agricultural Engineering Water Resources Research Institute North Carolina State University Campus Box 7625 Raleigh, NC 27695

April, 2005

East Prong of the Roaring River 2004 Annual Monitoring Report

- Delivered to: NCDENR/Ecosystem Enhancement Program 1619 Mail Service Center Raleigh, NC 27699-1619
- Prepared by: Biological & Agricultural Engineering Water Resources Research Institute North Carolina State University Campus Box 7625 Raleigh, NC 27695

April, 2005

2004 The East Prong of the Roaring River Monitoring Abstract

Reaches on the East Prong of the Roaring River were restored through the North Carolina Wetlands Restoration Program (NCWRP). The objectives of the project are to:

- 1. Improve water quality degraded by sedimentation by returning the East Prong Roaring River to a stable dimension, pattern and profile.
- 2. Restore the aquatic and terrestrial habitat of the stream corridor.
- 3. Restore floodplain and wetland functionality.
- 4. Improve the natural aesthetics of the river corridor.

This is the 4th year of the 5-year monitoring plan for the East Prong of the Roaring River

Project Name	The East Prong of the Roaring River (Stone Mtn.)
Designer's Name	NCSU-BAE Stream Restoration Institute Campus Box 7637 Raleigh, NC 27695 919-515-8182
Contractor's Name	SEI Environmental 1-800-474-7044
Project County	Wilkes County, North Carolina
Directions to Project Site	From Interstate 77 North merge onto US-21 bypass north via exit 83 on the left toward Sparta continue 2.8 miles. Turn slight right onto US-21. continue 7.9 miles. Turn left onto Traphill Road. Continue 5.1 miles. Turn right onto long Bottom Road/ NC-1737 contine 2.9 miles. Turn right on Stone Mountain Road into Stone Mountain State Park. The first parking area on the right is located at the upstream portion of Reach-4.
Drainage Area	22.0 sq. mi (17.5 sq. mi)
USGS Hydro Unit	03040101
NCDWQ Subbasin	03-07-01 Upper Yadkin
Project Length	5,100 Linear feet
Restoration Approach	5,100 ft of priority 1 Natural Channel Design (dimension, pattern, and profile)
Date of Completion	October 2000
Monitoring Dates	2001, 2002, 2003, October 2004

Table 1A. Background Information

Results and Discussion

Overall, while the majority of the stream is functioning well and holding grade, the stream has areas of concern and areas of immediate need. Table 2 shows a summary of monitoring measurement results. The majority of the restored stream classifies as a C4 with and rock cross vanes that control and hold the grade. There are cross vanes located on both Reaches that have water piping around the structure and are in risk of ultimate failure. Channel pattern is similar to as-built conditions. There are areas of bank erosion and migration that occur on the outside of most meander bends that are not heavily armored. Most of the bank erosion on this project is localized and a result of high Near Bank Stress on the outside of meander bends after The channel dimension for much of the restored section has not changed construction. significantly. The changes in channel dimension for some of the cross-sections represent a forming bench which is lower than the designed Bankfull. For the majority of the project the channel profile has well defined bed features and is in proper sequence. Most structures are holding grade and functioning well. Vegetation is not succeeding to levels required for mitigation credit, replanting trees to obtain mitigation requirements and live stakes only in areas where erosion is problematic. Invasive vegetation is an issue on this project site. The Kudzu and fescue should be monitored however, and may need control so more diverse herbaceous vegetation can develop.

Table 2a. Summary of Channel Conditions East Prong of the Roaring River Reach-2

DIMENSION		East Prong Roaring River Reach 2 Cross-section #1 Riffle					East Prong C	Roaring Riv ross-section Pool	ver Reach 2 #2	
Monitoring Year	2004	2003	2002	2001	2000	2004	2003	2002	2001	2000
Bankfull Cross-sectional Area	307.0	296.5	306.0	319.8		155.6	170.3	158.7	158.4	
Bankfull Width	61.2	61.2 62.0 62.0 61.9					53.4	53.0	53.9	
Bankfull Mean Depth	5.0	4.8	4.9	5.2		2.9	3.2	3.0	2.9	
Bankfull Max Depth	5.9	5.7	6.1	6.4		5.6	5.7	4.6	5.6	

DIMENSION		East Prong C	Roaring Riv ross-section Riffle	wer Reach 2 #3			East Prong C	Roaring Riv ross-section Riffle	ver Reach 2 #4	
Monitoring Year	2004	2003	2002	2001	2000	2004	2003	2002	2001	2000
Bankfull Cross-sectional Area	194.5	169.6	169.5	166.2	165.5	130.6	156.5	124.8	136.3	
Bankfull Width	60.1	58.3	59.7	60.2	60.0	48.4	56.5	53.0	54.0	
Bankfull Mean Depth	3.2	2.9	2.8	2.8	2.8	2.7	2.8	2.4	2.5	
Bankfull Max Depth	5.8	4.5	4.5	4.7	4.6	3.8	4.3	3.4	3.5	

	East Prong Roaring River	Reach 2	East Prong Roaring River Reach 2				
PATTERN	AS-BUILT			2004			
	Minimum Maximum	Median	Minimum	Maximum	Median		
Meander Wave Length	Not Reporte	l	507	614	559		
Radius of Curvature	Not Reporte	ł	145	196	166		
Beltwidth	Not Reported	1	162	328	177		

PROFILE	East Prong Roaring River Reach 2 DESIGN	East Prong Roaring River Reach 2 AS-BUILT	East Prong Roaring River Reach 2 2004
	Minimum Maximum Median	Minimum Maximum Median	Minimum Maximum Median
Riffle Length	Not Reported	Not Reported	35 104 61
Riffle Slope	Not Reported	Not Reported	0.4% 2.4% 1.3%
Pool Length	Not Reported	Not Reported	45 77 66
Pool to Pool Spacing	Not Reported	Not Reported	83 391 163
Bankfull Slope	Not Reported	Not Reported	0.66%

SUBSTRATE	STN MT Cross-se	N Reach 2 ection #1	STN MT Cross-se	N Reach 2 ection #2	STN MT Cross-se	N Reach 2 ection #3	STN MTN Reach 2 Cross-section #4	
	Rit	ffle	Po	ool	Rit	ffle	Riffle	
Monitoring Year	2000	2004	2000	2004	2000	2004	2000	2004
d50	N/A	42.50	N/A	0.97	3.93	20.10	0.31	36.17
d84	N/A	147.52	N/A	45.41	27.30	82.76	38.50	81.53

VEGETATION 2004 Monitoring Reach 2	Bare Root # 1	Live Stake # 1	Live Stake # 2	Live Stake # 3
Live Trees* / Total Tree Stems	0/2	3/6	12/20	0/1
% Survivability	0%	50%	60%	0%
Natural Regeneration (Tree Stems)	17	23	54	10
Herbaceous Cover (%cover)	90	n/a	n/a	n/a

Table 2b. Summary of Channel Conditions East Prong of the Roaring River Reach-4

DIMENSION		East Prong Roaring River Reach 4East Prong Roaring River Reach 4East Prong Roaring River Reach 4Cross-section #1Cross-section #2Cross-section #3RifflePoolPool							East Prong Roaring River Reach 4 Cross-section #2 Pool						
Monitoring Year	2004	2003	2002	2001	2000	2004	2003	2002	2001	2000	2004	2003	2002	2001	2000
Bankfull Cross-sectional Area	196.1	215.8	202.5	206.6	206.3	224.4	210.6	182.8	179.6	189.6	162.2	173.0	181.3	170.0	183.9
Bankfull Width	57.7	59.3	58.2	57.0	57.0	42.5	41.5	42.1	43.0	43.7	58.0	61.3	65.0	66.0	70.0
Bankfull Mean Depth	3.4	3.6	3.5	3.6	3.6	5.3	5.1	4.3	4.2	4.3	2.8	2.8	2.8	2.6	2.6
Bankfull Max Depth	4.9	5.6	4.9	4.7	5.0	8.1	7.8	6.9	6.8	6.6	5.5	5.6	5.4	5.7	5.0

DIMENSION	East Prong Roaring River Reach 4 Cross-section #4 Riffle						East Prong Roaring River Reach 4 Cross-section #5 Pool				East Prong Ci	Roaring Riv ross-section Riffle	ver Reach 4 #6		
Monitoring Year	2004	2003	2002	2001	2000	2004	2003	2002	2001	2000	2004	2003	2002	2001	2000
Bankfull Cross-sectional Area	140.4	139.1	140.7	139.7		182.6	175.1		183.6		215.6	223.1	207.3	210.1	
Bankfull Width	46.5	45.5	45.9	46.0		56.9	56.0		60.0		45.6	45.2	43.7	46.3	
Bankfull Mean Depth	3.0	3.1	3.1	3.0		3.2	3.1		3.1		4.7	4.9	4.7	4.5	
Bankfull Max Depth	5.0	4.5	4.0	3.9		5.8	5.8		4.8		7.4	7.3	7.4	6.0	

	East Prong Roaring River Reach 4	East Prong Roaring River Reach 4
PATTERN	AS-BUILT	2004
	Minimum Maximum Median	Minimum Maximum Median
Meander Wave Length	Not Reported	534 767 596
Radius of Curvature	Not Reported	78 296 122
Beltwidth	Not Reported	222 503 301

	East Pro	ng Roaring River I	Reach 2	East Pro	ong Roaring River	Reach 2	East Pro	ng Roaring River	Reach 2
PROFILE		DESIGN			AS-BUILT			2004	
	Minimum	Maximum	Median	Minimum	Maximum	Median	Minimum	Maximum	Median
Riffle Length]	Not Reported]	Not Reported		35	170	80
Riffle Slope]	Not Reported		1	Not Reported		0.4%	0.7%	0.5%
Pool Length]	Not Reported		1	Not Reported		60	130	85
Pool to Pool Spacing]	Not Reported		1	Not Reported		175	335	255
Bankfull Slope]	Not Reported		1	Not Reported			0.50%	

	East Prong	Roaring Riv	ver Reach 4	
	С	ross-section	#7	
		Pool		
2004	2003	2002	2001	2000
200.2		217.8	186.1	
71.5		71.4	71.4	
2.8		3.1	2.6	
7.4		8.2	7.5	

SUBSTRATE	STN MTI Cross-se	N Reach 4 ection #1	STN MT Cross-se	N Reach 4 ection #4	STN MTN Reach 4 Cross-section #6		
	Rit	ffle	Ri	ffle	Riffle		
Monitoring Year	2000	2004	2000	2004	2000	2004	
d50	N/A	42.50	N/A	0.97	3.93	20.10	
d84	N/A	147.52	N/A	45.41	27.30	82.76	

VEGETATION 2004 Monitoring Reach 2	Bare Root # 2	Bare Root # 3	Bare Root # 4	Live Stake # 1	Live Stake # 2	Live Stake # 3	Live Stake # 4	Live Stake # 5
Live Trees* / Total Tree Stems	4/4	1/5	0/0	3/6	0/0	0/0	0/0	0/0
% Survivability	100%	20%	0%	50%	0%	0%	0%	0%
Natural Regeneration (Tree Stems)	>300	102	>300	26	0	>100	0	0
Herbaceous Cover (%cover)	90	90	90	n/a	n/a	n/a	n/a	n/a

Areas of Concern

The following areas of concern should be monitored closely and considered for repair as suggested:

The East Prong of the Roaring River

- Rock Cross Vanes
 - There are two rock cross vanes that have piping around the vane arm located on Reach-2 at stations 13+00 and 14+50. If these two structures fail there will be a massive head-cut through the system.
 - At station 13+00 there is bank erosion on the left bank and water is piping past the rock cross vane. At this point the structure is still holding grade a lower elevation but ultimate will occur if this vane is not repaired or redesigned.
 - At station 14+50 there is bank erosion on the left bank and water is piping past the rock cross vane. At this point the structure is still holding grade at a lower elevation but ultimate failure will occur if this vane is not repaired or redesigned.
 - There is one rock cross vanes that have piping around the vane arm located on Reach-4 at stations 25+20. If these two structures fails there will be a localized head-cut.
 - At station 25+20 there is massive bank erosion on the right bank and water is piping past the rock cross vane. At this point the structure is not holding grade ultimate failure will occur if repairs or redesign are not pursued
- Bank Erosion and Meander Migration
 - The total bank material that has been transported, since construction in October 2000, from the outside meander banks in both reaches is nearly 4000 Tons
 - Bank erosion on the outside of meander bends has been noted at one location on the reaches of Reach 2 at stations 6+00
 - At Station 6+00 there is bank erosion on the outside of a meander bend the bank still has a High BEHI with a Moderate NBS. The bank height for this bank section is ~4 ft.
 - Bank erosion on the outside of meander bends has been noted at four locations on the reaches of Reach 4 at stations 21+00, 24+00, 30+00 and 34+00.
 - At Station 21+00 there is bank erosion on the outside of a meander bend the bank still has a High BEHI with a Moderate NBS. The bank height for this bank section is ~4 ft.
 - At Station 24+00 there is bank erosion on the outside of a meander bend the bank still has a High BEHI with a Moderate NBS. The bank height for this bank section is ~6 ft.
 - At Station 30+00 there is bank erosion on the outside of a meander bend the bank still has a High BEHI with a Moderate NBS. The bank height for this bank section is \sim 5 ft.
 - At Station 34+00 there is bank erosion on the outside of a meander bend the bank still has a High BEHI with a Moderate NBS. The bank height for this bank section is ~10 ft.

Example Issue Photos

The following are photographs of typical sections and areas of concern throughout the project.

Typical Riffle

Typical Pool

Issue Photo 1. Bank Erosion STA ~28+75 Reach 2

Issue Photo 2. Erosion Cross Vane STA ~12+90 Reach 4

*There are more issue photos in the photo log of this report

	ROCK CROSS VANE ROCK CROSS VANE ROCK CROSS VANE ROCK CROSS VANE ROCK CROSS VANE BANK FULL BANK EROSION	STA: 32+66 POOL CROSS-SECTION #7	North Contraction of the second secon	3	
DATE 04 PROJECT NO. FILENAMESTONI SHEET NO. Pg DRAWING NO.	STONE MOUNTAIN STATE PARK EAST PRONG OF THE ROARING RIVER WILKES COUNTY, N.C.	NC STATE UNIVERSITY	1 NITIAL DESIGN		DAB DRC 04/30/0
4/30/2005 E MTN.DWG 3 - ×	2004 MONITORING-ABSTRACT PLAN SHEET REACH-4	BIOLOGICAL & AGRICULTURAL ENGINEERING Weaver Labs Campus Box 7625 North Carolina State University Raleigh, NC 27695	NO	REVISIONS	DRN CHK DATE

Table of Contents

2004 Th	e East Prong of the Roaring River Monitoring Abstract	i
Table 1	A. Background Information	i
Results	and Discussion	ii
Table 2a	a. Summary Table of Results –Reach-2	iii
Table 2	b. Summary Table of Results –Reach-4	iv
Areas of	f Concern	V
Exampl	e Issue Photos	vi
Profile 1	Reach 2	vii
Profile 1	Reach 4	viii
Plan Sh	eet Reach 2	ix
Plan Sh	eet Reach 4	X
Table of	f Contents	xi
Tables a	and Figures	xi
1.0	BACKGROUND INFORMATION	1
1.1	Goals and Objective	2
1.2	Project Location	2
1.3	Project Description	2
2.0	YEAR 2004 RESULTS AND DISCUSSION	
2.1	Vegetation	
2.1.1	Results and Discussion	
2.2	Geo-Morphology	
2.2.1	Results and Discussion	Error! Bookmark not defined.
2.3	Biological and Ecological	
2.3.1	Results and Discussion	
3.0	AREAS OF CONCERN	

Tables and Figures

Figure 1a. Project Location with USGS – Reach 2	3
Figure 1b. Project Location with USGS - Reach 4	4
Figure 2. Project Watershed with USGS Quad	5
Figure 3. Project Watershed with Ortho-Photo	6
Figure 4a. Plan Sheet Reach 2 - 2004 Monitoring	7
Figure 4b. Plan Sheet Reach 4 - 2004 Monitoring	8
Figure 5a. Plan Sheet Reach 2 – ASBUILT & 2004 Monitoring	9
Figure 5b. Plan Sheet Reach 4 – ASBUILT & 2004 Monitoring	10
Table 1a. Summary Table of Results –Reach-2	16
Table 1b. Summary Table of Results –Reach-4	17
Figure 6a. Profile Reach -2	18
Figure 6b. Profile Reach -4	19

1.0 BACKGROUND INFORMATION

Project planning was initiated for the East Prong of the Roaring River Restoration in 1999 for the implementation of a developing watershed stream restoration project at Stone Mountain State Park in North Carolina (Figure 2). Natural Channel Design techniques and procedures were employed in the restoration of the East Prong Roaring River in Wilkes County, NC. In this article I will describe the project and how the restoration will benefit this river and its surrounding riparian corridor.

The East Prong Roaring River stream restoration project has been a collaborative effort between the North Carolina Ecosystem Enhancement Program, North Carolina Division of Parks and Recreation, the North Carolina Stream Restoration Institute at NCSU, and Buck Engineering. The project includes nearly two miles of stream restoration within the boundaries of Stone Mountain State Park in Wilkes and Allegany Counties. The drainage area for the section of river being restored is approximately 22 square miles. The construction aspect of the stream restoration project was from July 2000 to the October 2000. Floodplain and stream bank planting continued through the winter until February 2001. This project offers a rare opportunity for a "true restoration". The design was approached with the stability of the river in mind and little to no constraints were present as the land in the watershed is nearly all enclosed within the park boundaries, and utilities, roads, and residences were not a major issue.

Stone Mountain State Park was purchased by the State of North Carolina in the early 1960s. Prior to this purchase, all of the streams in the alluvial valley portion of the park were modified to improve agricultural production. Field observations suggest that tributary streams in the alluvial valley were straightened. A large portion of the downstream portion of the restoration site was used for gravel mining. As part of this operation, the East Prong was channelized, impounded, and moved several times, resulting in destabilization of the channel. Spoil piles that were created during the mining operation created overly high bank heights and as a result were being eroded away during high flows. Aerial photos and the USGS Glade Valley Quadrangle indicate locations of the historic channels.

The project consisted of the analysis of the 22.0 square mile portion of the East Prong Roaring River watershed (located within USGS Hydrologic Unit Code 03040101, NCDWQ Sub-basin 03-07-01 of the Upper Yadkin River Basin) that contribute drainage to the project site. The restoration of these portions of the East Prong of the Roaring River Restoration, located in Stone Mountain State Park, was conducted to correct identified system deficiencies including severe bank erosion, channel widening, and the loss of aquatic habitat resulting from stream channelization, the loss of riparian vegetation, and watershed development. The goal of the project was to develop a stable stream channel with reduced bank erosion, efficient sediment transport, enhanced warm water fisheries, and improved overall stream habitat and site aesthetics. Implementation of the project was completed by October 2000.

1.1 Goals and Objective

The East Prong Roaring River was restored through the North Carolina Wetlands Restoration Program (NCWRP). The goals of the stream restoration project on the East Prong Roaring River were as follows:

- 5. Improve water quality degraded by sedimentation by returning the East Prong Roaring River to a stable dimension, pattern and profile.
- 6. Restore the aquatic and terrestrial habitat of the stream corridor.
- 7. Restore floodplain and wetland functionality.
- 8. Improve the natural aesthetics of the river corridor.

1.2 **Project Location**

The East Prong Roaring River stream restoration project is Located in Stone Mountain State Park in Wilkes County (figure 2). From Interstate 77 North merge onto US-21 bypass north via exit 83 on the left toward Sparta continue 2.8 miles. Turn slight right onto US-21. continue 7.9 miles. Turn left onto Traphill Road. Continue 5.1 miles. Turn right onto long Bottom Road/ NC-1737 contine 2.9 miles. Turn right on Stone Mountain Road into Stone Mountain State Park. The first parking area on the right is located at the upstream portion of Reach-4.

1.3 Project Description

A previously straight and incised East Prong Roaring River was restored using channel dimension, pattern, and profile modifications and the establishment of riparian zone adjacent to the creek. Channel profile is maintained through the use of rock cross vanes. Channel pattern is maintained through the use of single vanes and vegetation along the channel banks.

The East Prong Roaring River stream restoration project has been a collaborative effort between the North Carolina Ecosystem Enhancement Program, North Carolina Division of Parks and Recreation, the North Carolina Stream Restoration Institute at NCSU, and Buck Engineering. The project includes nearly two miles of stream restoration within the boundaries of Stone Mountain State Park in Wilkes and Allegany Counties. The drainage area for the section of river being restored is approximately 22 square miles. The construction aspect of the stream restoration project was from July 2000 to the October 2000. Floodplain and stream bank planting continued through the winter until February 2001. This project offers a rare opportunity for a "true restoration". The design was approached with the stability of the river in mind and little to no constraints were present as the land in the watershed is nearly all enclosed within the park boundaries, and utilities, roads, and residences were not a major issue.

	50 0 50 100	SCALE 1" = 100'			2	of the state of th				
SHEET NO. PG DRAWING NO.	PROJECT NO. FILENAMESTON	EAST	TONE MOUNTAIN STATE PARK PRONG OF THE ROARING RIVER WILKES COUNTY, N.C.	NC STATE UNIVERSITY		1 NITIAL DESIGN		DAB	DRC ()4/30/05
- - -	E MTN.DWG	2(F	004 MONITORING-USGS PLAN SHEET REACH-2	BIOLOGICAL & AGRICULTURAL ENGINEERING Weaver Labs Campus Box 7625 North Carolina State University Raleigh, NC 27695		NO	REVISIONS	DRN	СНК	DATE

	SS MARE	STA: 32+66 POOL CROSS-SECTION #7	Some and the second sec		
PROJECT NO. FILENAME SHEET NO. Pg DRAWING NO.	STONE MOUNTAIN STATE PARK EAST PRONG OF THE ROARING RIVER WILKES COUNTY, N.C.	NC STATE UNIVERSITY	1 NITIAL DESIGN	DAB DRC	04/30/05
/30/2005 E MTN.DWG - 4	2004 MONITORING-USGS PLAN SHEET REACH-4	BIOLOGICAL & AGRICULTURAL ENGINEERING Weaver Labs Campus Box 7625 North Carolina State University Raleigh, NC 27695	NO F	KEVISIONS DRN CHK	DATE

		SCALE 1" = 3000'									
SHEET NO. P DRAWING NO.	PROJECT NO. FILENAME	STONE MC EAST PRONG WILKE		NC STATE	JNIVERSITY	1	NITIAL DESIGN		DAB	B DRC	04/30/05
ی ا ت	E MTN.DWG	22 SQUARE WATERSHEI	MILES (17.5 SQMI) D WITH USGS QUAD	BIOLOGICAL & AGRICUL Weaver Labs Carr North Carolina S Raleigh, NC	TURAL ENGINEERING npus Box 7625 tate University C 27695		D	REVISIONS	DRN	I CHK	C DATE

		1500								
		0	SCALE							
		1500	1" = 300							
		3000	0,							
DRAWING NO.	FILENAMESTONE	PROJECT NO.	DATE	STONE MOUNTAIN STATE PARK EAST PRONG OF THE ROARING RIVER WILKES COUNTY, N.C.	NC STATE UNIVERSITY	1	NITIAL DESIGN	DAB	DRC 04,	/30/05
6	MTN.DWG	C002 /0C /4		22 SQUARE MILES (17.5 SQMI) WATERSHED WITH ORTHO-PHOTO	BIOLOGICAL & AGRICULTURAL ENGINEERING Weaver Labs Campus Box 7625 North Carolina State University Raleigh, NC 27695	 N0	REVISIONS	DRN	СНК	DATE

	SCALE 1" = 150' 75 0 75 150		32+00 31+0 32+00 31+0 CROSS-SECTION #7	o and the second of the second			
FILENAME STONS SHEET NO. Pg DRAMNG NO.	DATE 04 PROJECT NO.	STONE MOUNTAIN STATE PARK EAST PRONG OF THE ROARING RIVER WILKES COUNTY, N.C.	NC STATE UNIVERSITY	1	NITIAL DESIGN	DAB	DRC 04/30/05
8	./30/2005	2004 MONITORING PLAN SHEET REACH-4	BIOLOGICAL & AGRICULTURAL ENGINEERING Weaver Labs Campus Box 7625 North Carolina State University Raleigh, NC 27695	NO	REVISIONS	DRN	CHK DATE

SCALE 1" = 100' 50 0 50 100	or in the second		Solution of the solution of th	
DATE 0 PROJECT NO. FILENAME STOR SHEET NO. DRAWING NO.	STONE MOUNTAIN STATE PARK EAST PRONG OF THE ROARING RIVER WILKES COUNTY, N.C.	NC STATE UNIVERSITY	1 NITIAL DESIGN	DAB DRC 04/30/05
4/30/2005 IE MTN DWG g - 9	ASBUILT & 2004 MONITORING PLAN SHEET REACH-2	BIOLOGICAL & AGRICULTURAL ENGINEERING Weaver Labs Campus Box 7625 North Carolina State University Raleigh, NC 27695	NO REVISIONS	DRN CHK DATE

SCALE 1" = 150' 75 0 75 150		32+00 31+00 32+00 31+00 CROSS-SECTION #7	A Charles of the second	3		
DATE 0. PROJECT NO. FILENAMESTON SHEET NO. P. DRAWING NO.	STONE MOUNTAIN STATE PARK EAST PRONG OF THE ROARING RIVER WILKES COUNTY, N.C.	NC STATE UNIVERSITY	1 NITAL DESIGN		DAB	DRC 04/30/05
+/30/2005 E MTN.DWG 3 - 10	ASBUILT & 2004 MONITORING PLAN SHEET REACH-4	BIOLOGICAL & AGRICULTURAL ENGINEERING Weaver Labs Compus Box 7625 North Carolina State University Raleigh, NC 27695	NO	REVISIONS	DRN	CHK DATE

2.0 YEAR 2004 RESULTS AND DISCUSSION

Year 2004 monitoring results are shown for Reach 2 and Reach 4 of the East Prong of the Roaring River restoration project.

2.1 Vegetation

Using the Draft Vegetation Monitoring Plan for NCWRP Riparian Buffer and Wetland Restoration Projects, 1 bare root monitoring plot was located within the riparian buffer of Reach 2 and 3 bare root plots were placed within the buffer of Reach 4. There were 3 live stake monitoring plots located within the riparian buffer of Reach 2 and 5 live stake plots were placed within the buffer of Reach 2 and 5 live stake plots were placed within the buffer of Reach 2 and 5 live stake plots of Reach 4. No reference area was studied; therefore no comparisons could be made to reference conditions.

2.1.1 Results and Discussion

No additional plants were installed in 2004. There was a marked reduction in surviving bare root plants in Reach 2 and Reach 4. Deer browse continues to be a problem at this site. A very few bare root plants and live stakes have survived deer browse, but have been limited in vertical growth as a result. Browse has occurred from the top down. Only the taller planted trees performed well against the deer browse. As in last years survey results, black walnut (Juglans nigra) and sycamore (Platanus occidentalis) seem to be the least browsed species. No indication of beaver activity or deer scraping was seen on any of the surveyed trees.

Natural regeneration was surveyed with the regular plots again this growing season. Seedlings range from 1 to 4 years old are abundant throughout the project area. The majority species is sycamore, tulip poplar (Liriodendron tulipifera), river birch (Betula nigra), Virginia pine (Pinus virginiana), sweet gum (Liquidambar styraciflua), black cherry (Prunus serotina), tag alder (Alnus serrulata), and spice bush (Lindera benzoin). Deer browse does not seem to be a problem with these plants.

Bare root survival was poor in all plots. Extrapolated averages across 4 bare root plots gave an overall project average of 5 planted trees per acre that are surviving. Live plants included sycamore, black cherry, river birch, black walnut, tag alder, spice bush, and silky dogwood (Cornus amomum). Only taller black walnut and sycamore bare roots planted this season were less affected by deer browse. Other survivors were browsed lower to the ground.

Live stake survival was again extremely low. This may be attributed to droughty conditions during growing season and in some cases, washout from flooding. Deer browse was also a major contributing factor. It was noted that foot traffic up and down the staked banks was often heavy in select places and that many stakes were dislodged or removed completely. Several stake plots had sloughed off during high water events.

Herbaceous cover was determined in bare root plots and was greater than 90% in all plots. Switchgrass, rushes, and sedges were exceptionally robust. Seeding is presently not required.

Invasive vegetation control was not employed this growing season. Maintenance is highly recommended for next season. Kudzu (Pueraria lobata) was observed in small patches throughout the area.

2.2 Geo-Morphology

Restored channel dimension, pattern, profile and substrate were examined during the 2004 monitoring. Both Reach 2 and Reach 4 of the East Prong of the Roaring River received a full three dimensional fluvial geo-morphological survey in the fall of 2004. Limited data was used from the prior years based on the compatibility of the data sources.

2.2.1 Results and Discussion

Reach 2

The East Prong of the Roaring River is a gravel bed channel with well defined bed features. The restoration construction created a C4 channel from an existing C4 with a very low sinuosity. This reach is approximately 1500 feet in length the channel was restored by changing the dimension, pattern and profile of the river. The river slope for this reach is 0.66%, this reach has entrenchment ratio greater than 3.0 and the ratio of the top of bank height to the bankfull height is approximately < 1.2. There are rock cross vanes that hold grade on this reach. The channel profile along Reach 2 has not shown signs of down-cutting or deposition between the as-build profile and this year's monitoring. In general for this reach of stream features are still located in the correct plan form locations.

Rock cross vanes are holding the grade of the stream but the two at the end of the reach are at risk of massive failure. The river has cut around the left vane arm on both of the cross vanes at the end of the reach. The vanes are located at approximately Sta: 13+00 and 14+50. If these vanes are not repaired the river will continue to erode around the vane arms and there will be an ultimate failure of both vanes. An ultimate failure of these vanes will result in a head-cut that would continue upstream in the reach until it reached a stable grade control. There is a potential of a 4.5ft head-cut if these structures are allowed to fail this would related to a head cut approximately 500 ft or more upstream from the rock cross vane at Sta: 13+00.

Cross section results were calculated using NCSU techniques for consistency purposes, there were 3-5 years of cross section data available for analysis. Cross-sectional trends were analyzed by looking at the cross-sections, change in planform, BEHI, and the longitudinal profile. Cross-Section 1 is located on a riffle and has no significant change in cross sectional area from 320 square feet to 307 square feet in 2004. Cross-section 2 is located on a pool and has no significant change in cross sectional area from 158 square feet to 156 square feet in 2004. Cross-Section 2 does show about a four foot bank migration at the toe of the bank and high NBS with approximately a 4 foot bank height. Cross-section 3 is located on a riffle and has a significant change in cross sectional area from 165 square feet to 195 square feet in 2004. Cross-Section 3 shows about a four foot bank migration at the toe of the bank and high NBS on the right bank with approximately a 4 foot bank height. This cross section is located on the downstream end of an area of massive bank erosion and migration of the outside of a meander bend. There is a depositional bench that is forming on cross-section 3 that produces a section area of 144 square foot. There is major bank erosion and migration on the outside of the meander bends that have a tight radius of curvature and a short arc length. Cross-Section 4 is located on a riffle and has no significant change in cross sectional area from 136 square feet to 131 square feet in 2004. Bank erosion mostly due to meander migration has transported approximately 1000 tons of sediment from of this reach since construction.

Reach 4

The restoration construction created a C4 channel from an existing C4 / D4 with a very low sinuosity. This reach is approximately 3600 feet in length the channel was restored by changing the dimension, pattern and profile of the river. The river slope for this reach is 0.50%, this reach has entrenchment ratio greater than 3.0 and the ratio of the top of bank height to the bankfull height is approximately < 1.2. There are rock cross vanes that hold grade on this reach. The channel profile along Reach 4 has not shown signs of down-cutting or deposition between the as-build profile and this year's monitoring. In general for this reach of stream features are still located in the correct plan form locations.

Rock cross vanes are holding the grade of the stream but the one is at risk of massive failure. The river has cut around the right vane arm on the cross vanes at Sta: 24+80. If this vanes is not repaired the river will continue to erode around the vane arms and there will be an ultimate failure of this vane. There is a potential of a 3.0ft head-cut if this structure is allowed to fail this would related to a head cut approximately 300 ft or more upstream from the rock cross vane at Sta: 22+00.

There was 3-5 years of cross section data available for analysis of this reach's cross-sections. Cross-sectional trends were analyzed by looking at the cross-sections, change in planform, BEHI, and the longitudinal profile. Cross-Section 1 is located on a riffle and has no significant change in cross sectional area from 206 square feet to 196 square feet in 2004. This cross-section shows bank erosion on the left bank due to the river re-adjusting a straight efficient riffle and a forming bench on the right bank. There is a depositional bench that is forming on cross-section 1 that produces a section area of 132 square foot. Cross-section 2 is located on a pool and has a significant change in cross sectional area from 190 square feet to 224 square feet in 2004. Cross-section 2 does show about a six foot bank migration at the toe of the outside meander bank and high NBS with approximately a 10 foot bank height. The top of the right bank of cross-section 2 is reinforced with mature tree tap roots. Cross-sections 3 is located on a pool and has no significant change in cross sectional area from 184 square feet to 164 square feet in 2004. This pool has a very tight radius of curvature but the bank is armored and there is a j-hook placed to relieve to NBS on the outside of the meander bend. The point bar of Cross-Section 3 is slightly building since construction and the channel seems to be narrowing. Cross-Section 4 is located on a riffle and has no significant change in cross sectional area from 140square feet to 140 square feet in 2004. Section 5 is located on a pool and has no significant change in cross sectional area from 183 square feet to 183 square feet in 2004. Section 6 is located on a riffle and has no significant change in cross sectional area from 210 square feet to 215 square feet in 2004. Section 6 is located on the apex of a slight bend and has a small lateral pool located on the left side of the cross-section. Cross-section 7 is located on a pool and has a significant change in cross sectional area from 186 square feet to 209 square feet in 2004. Cross-section 2 does show about a six foot bank migration at the toe of the outside meander bank and high NBS with approximately an 8 foot bank height. Bank erosion mostly due to meander migration has transported approximately 3000 tons of sediment from of this reach since construction.

The channel substrate in the riffle sections of the East Prong of the Roaring River Reaches 2 and 4 are gravel and have a D50 of 19 mm with a D84 of 82 mm. Future monitoring should better evaluate channel substrate and sediment loading patterns.

2.3 Biological and Ecological

2.3.1 Results and Discussion

Studies have indicated that stream bank erosion along downstream reaches of the East Prong of the Roaring River was severe due to past agricultural practices. Restoration of the East Prong, within Stone Mountain State Park, included stabilization of the eroding banks and the provision of instream habitat as well as reestablishment of pattern, dimension and profile. The total length of the project was 10,633 linear feet in two major reaches of the river. Biological samples were collected from three locations. Reference data (site 1) were collected from a site above both restoration reaches within a stable section of the East Prong. Two downstream stations were also sampled. Site 2 is within a stable reach of the East Prong but below a section of the East Prong that was restored; this reach was not manipulated during the construction. Site 3 is within the downstream restoration section and within a reach that was restored and is essentially a new channel. Data were collected during the months of September or October during all surveys.

raeie. Saininai j	50000000	,				n proje	et at o	10110 111	o univer							
Site Location	Site	1, upst	tream	refere	nce			Site 2			Site 3					
Metric/Survey year	1998	2001	2002	2003	2004	1998	2001	2002	2003	2004	1998	2001	2002	2003	2004	
Total Taxa Richness	73	61	73	73	69	75	67	75	88	59	66	61	73	79	68	
EPT Taxa Richness	39	37	37	41	42	38	36	35	41	32	36	28	32	40	38	
EPT abundance	165	173	202	215	182	170	154	183	219	157	194	109	126	180	174	
Dominants in Common Index (%)	-	-	-	-	-	67%	76%	78%	73%	62%	74%	34%	48%	64%	69%	
Number of Keystone Species	31	23	26	28	24	20	14	15	21	17	19	8	11	18	17	

Table. Summary statistics from the stream restoration project at Stone Mountain State Park.

Relatively stable conditions were noted at the reference reach during these investigations (SEPT ranged from 37-42); however, total taxa richness was lower during the survey conducted in 2001 and much lower EPT abundance values were noted in 1998, 2001 and 2004) presumably related to high flow conditions prior to collection. This site is dominated by intolerant taxa. Slightly lower taxa richness values were recorded from all of the locations during the first post-construction survey, although the differences in EPT taxa richness between the pre- and post- construction surveys was larger at the most downstream location (site 3 in bold). EPT abundance values increased progressively downstream during the preconstruction survey: however this trend was reversed during post-construction investigations in 2001-2003. Note however, that these differences are much smaller during the 2003 survey (in bold). The most recent investigation was conducted immediately after major rain events associated with hurricanes Francis and Ivan. During the 2004 survey, EPT abundance values were lowest at station 2 and relatively stable within the restored reach at station 3. These data suggest that this reach of the East Prong Roaring River has stabilized and that some instability was noted at site 2. Dominants in Common index values remain relatively similar at site 2 (range from 67 to 78% through 2003), but increase progressively at station 3 following construction. Interestingly, this trend was reversed during the 2004 investigation where a higher DIC value was found at site 3 and a lower number at site 2 (in bold). In addition the number of keystone species in common with the reference reach has increased during surveys conducted through 2003. Lower numbers of keystone taxa were collected during the 2004 survey at all sites following the extremely high flow events. These data suggest that improvement in the biological condition of the East Prong of the Roaring River is occurring. but that DIC numbers do not match the proposed success criteria.

Data in the below table illustrate that there was a significant difference in the numbers of EPT taxa between the reference reach and the two downstream restoration sites. Note that the number of stoneflies collected from the organic component of the samples was much higher at the reference reach and that the percentage of stoneflies decline in this organic fraction at the downstream locations. We noted during the 2003 survey that the number of large (mature) stoneflies was much lower at site number 3. In addition we also noted that many of the rocks at station 3 had not yet developed periphytic material, which would support a grazing community of insects (Elimia for example was not collected at the downstream location).

Table. Abundance values of Ephemeroptera, Plecoptera and Trichoptera collected from inorganic and organic components of samples during the 2003 investigation from East Prong Roaring River at Stone Mountain State Park.

	Refe	rence	Sit	e 2	Site	3	
	inorganic	organic	inorganic	organic	inorganic	organic	
Ephemeroptera	149	46	179	101	145	60	
Plecoptera	69	121	73	70	44	52	
Trichoptera	91	52	74	26	91	32	
SubTotal	309	219	326	197	280	144	
Total Abundance	5	28	52	23	424		

Table 1a. Summary of Channel Conditions East Prong of the Roaring River Reach-2

DIMENSION		East Prong C	Roaring Riv ross-section Riffle	ver Reach 2 #1			East Prong C	Roaring Riv ross-section Pool	ver Reach 2 #2	
Monitoring Year	2004	2003	2002	2001	2000	2004	2003	2002	2001	2000
Bankfull Cross-sectional Area	307.0	296.5	306.0	319.8		155.6	170.3	158.7	158.4	
Bankfull Width	61.2	62.0	62.0	61.9		53.3	53.4	53.0	53.9	
Bankfull Mean Depth	5.0	4.8	4.9	5.2		2.9	3.2	3.0	2.9	
Bankfull Max Depth	5.9	5.7	6.1	6.4		5.6	5.7	4.6	5.6	

DIMENSION		East Prong C	Roaring Riv ross-section Riffle	wer Reach 2 #3			East Prong C	Roaring Riv ross-section Riffle	wer Reach 2 #4	
Monitoring Year	2004	2003	2002	2001	2000	2004	2003	2002	2001	2000
Bankfull Cross-sectional Area	194.5	169.6	169.5	166.2	165.5	130.6	156.5	124.8	136.3	
Bankfull Width	60.1	58.3	59.7	60.2	60.0	48.4	56.5	53.0	54.0	
Bankfull Mean Depth	3.2	2.9	2.8	2.8	2.8	2.7	2.8	2.4	2.5	
Bankfull Max Depth	5.8	4.5	4.5	4.7	4.6	3.8	4.3	3.4	3.5	

	East Prong Roaring Rive	Reach 2	East Pro	ng Roaring River	Reach 2		
PATTERN	AS-BUILT		2004				
	Minimum Maximum	Median	Minimum	Maximum	Median		
Meander Wave Length	Not Reporte	d	507	614	559		
Radius of Curvature	Not Reporte	d	145	196	166		
Beltwidth	Not Reporte	d	162	328	177		

PROFILE	East Prong Roaring River R DESIGN	Reach 2	East Pro	ng Roaring River I AS-BUILT	Reach 2	East Prong Roaring River Reach 2 2004			
	Minimum Maximum	Minimum	Maximum	Median	Minimum	Maximum	Median		
Riffle Length	Not Reported	Not Reported			35	104	61		
Riffle Slope	Not Reported	1	Not Reported		0.4%	2.4%	1.3%		
Pool Length	Not Reported		Not Reported			45	77	66	
Pool to Pool Spacing	Not Reported	Not Reported			83	391	163		
Bankfull Slope	Not Reported	Not Reported			0.66%				

SUBSTRATE	STN MT Cross-se	N Reach 2 ection #1	STN MT Cross-se	N Reach 2 ection #2	STN MTI Cross-se	N Reach 2 ection #3	STN MTN Reach 2 Cross-section #4		
	Rit	ffle	Po	ool	Rit	ffle	Riffle		
Monitoring Year	2000	2004	2000	2004	2000	2004	2000	2004	
d50	N/A	42.50	N/A	0.97	3.93	20.10	0.31	36.17	
d84	N/A	147.52	N/A	45.41	27.30	82.76	38.50	81.53	

VEGETATION 2004 Monitoring Reach 2	Bare Root # 1	Live Stake # 1	Live Stake # 2	Live Stake # 3
Live Trees* / Total Tree Stems	0/2	3/6	12/20	0/1
% Survivability	0%	50%	60%	0%
Natural Regeneration (Tree Stems)	17	23	54	10
Herbaceous Cover (%cover)	90	n/a	n/a	n/a

Table 1b. Summary of Channel Conditions East Prong of the Roaring River Reach-4

DIMENSION		East Prong Ci	Roaring Riv ross-section Riffle	ver Reach 4 #1		East Prong Roaring River Reach 4 Cross-section #2 Pool					East Prong Roaring River Reach 4 Cross-section #3 Pool					
Monitoring Year	2004	2003	2002	2001	2000	2004	2003	2002	2001	2000	2004	2003	2002	2001	2000	
Bankfull Cross-sectional Area	196.1	215.8	202.5	206.6	206.3	224.4	210.6	182.8	179.6	189.6	162.2	173.0	181.3	170.0	183.9	
Bankfull Width	57.7	59.3	58.2	57.0	57.0	42.5	41.5	42.1	43.0	43.7	58.0	61.3	65.0	66.0	70.0	
Bankfull Mean Depth	3.4	3.6	3.5	3.6	3.6	5.3	5.1	4.3	4.2	4.3	2.8	2.8	2.8	2.6	2.6	
Bankfull Max Depth	4.9	5.6	4.9	4.7	5.0	8.1	7.8	6.9	6.8	6.6	5.5	5.6	5.4	5.7	5.0	

DIMENSION		East Prong C	Roaring Riv ross-section Riffle	ver Reach 4 #4			East Prong Roaring River Reach 4 Cross-section #5 Pool					East Prong Roaring River Reach 4 Cross-section #6 Riffle					
Monitoring Year	2004	2003	2002	2001	2000	2004	2003	2002	2001	2000	2004	2003	2002	2001	2000		
Bankfull Cross-sectional Area	140.4	139.1	140.7	139.7		182.6	175.1		183.6		215.6	223.1	207.3	210.1			
Bankfull Width	46.5	45.5	45.9	46.0		56.9	56.0		60.0		45.6	45.2	43.7	46.3			
Bankfull Mean Depth	3.0	3.1	3.1	3.0		3.2	3.1		3.1		4.7	4.9	4.7	4.5			
Bankfull Max Depth	5.0	4.5	4.0	3.9		5.8	5.8		4.8		7.4	7.3	7.4	6.0			

	East Prong Roaring River Reach 4	East Prong Roaring River Reach 4
PATTERN	AS-BUILT	2004
	Minimum Maximum Median	Minimum Maximum Median
Meander Wave Length	Not Reported	534 767 596
Radius of Curvature	Not Reported	78 296 122
Beltwidth	Not Reported	222 503 301

	East Pro	ng Roaring River I	Reach 2	East Pro	ng Roaring River	Reach 2	East Prong Roaring River Reach 2			
PROFILE		DESIGN			AS-BUILT			2004		
	Minimum	Maximum	Median	Minimum	Maximum	Median	Minimum	Maximum	Median	
Riffle Length]	Not Reported			Not Reported		35	170	80	
Riffle Slope	Not Reported		-	Not Reported			0.7%	0.5%		
Pool Length]	Not Reported			Not Reported			130	85	
Pool to Pool Spacing	Not Reported		-	Not Reported		175	335	255		
Bankfull Slope	Not Reported		Not Reported			0.50%				

Bankfull Slope	Not Reported			Not Reported					
	STN MT	N Reach 4	STN MTN Reach 4		STN MTN Reach 4				
SUBSTRATE	Cross-se	ection #1	Cross-se	Cross-section #4		ection #6			
	Rit	ffle	Ri	ffle	Riffle				
Monitoring Year	2000	2004	2000	2004	2000	2004			
d50	N/A	42.50	N/A	0.97	3.93	20.10			
d84	N/A	147.52	N/A	45.41	27.30	82.76			

VEGETATION 2004 Monitoring Reach 2	Bare Root # 2	Bare Root # 3	Bare Root # 4	Live Stake # 1	Live Stake # 2	Live Stake # 3	Live Stake # 4	Live Stake # 5
Live Trees* / Total Tree Stems	4/4	1/5	0/0	3/6	0/0	0/0	0/0	0/0
% Survivability	100%	20%	0%	50%	0%	0%	0%	0%
Natural Regeneration (Tree Stems)	>300	102	>300	26	0	>100	0	0
Herbaceous Cover (%cover)	90	90	90	n/a	n/a	n/a	n/a	n/a

East Prong Roaring River Reach 4							
Cross-section #7							
Pool							
2004	2003	2002	2001	2000			
200.2		217.8	186.1				
71.5		71.4	71.4				
2.8		3.1	2.6				
7.4		8.2	7.5				

3.0 AREAS OF CONCERN

The following areas of concern should be monitored closely and considered for repair as suggested:

The East Prong of the Roaring River

- Rock Cross Vanes
 - There are two rock cross vanes that have piping around the vane arm located on Reach-2 at stations 13+00 and 14+50. If these two structures fail there will be a massive head-cut through the system.
 - At station 13+00 there is bank erosion on the left bank and water is piping past the rock cross vane. At this point the structure is still holding grade a lower elevation but ultimate will occur if this vane is not repaired or redesigned.
 - At station 14+50 there is bank erosion on the left bank and water is piping past the rock cross vane. At this point the structure is still holding grade at a lower elevation but ultimate failure will occur if this vane is not repaired or redesigned.
 - There is one rock cross vanes that have piping around the vane arm located on Reach-4 at stations 25+20. If these two structures fails there will be a localized head-cut.
 - At station 25+20 there is massive bank erosion on the right bank and water is piping past the rock cross vane. At this point the structure is not holding grade ultimate failure will occur if repairs or redesign are not pursued
- Bank Erosion and Meander Migration
 - The total bank material that has been transported, since construction in October 2000, from the outside meander banks in both reaches is nearly 4000 Tons
 - Bank erosion on the outside of meander bends has been noted at one location on the reaches of Reach 2 at stations 6+00
 - At Station 6+00 there is bank erosion on the outside of a meander bend the bank still has a High BEHI with a Moderate NBS. The bank height for this bank section is ~4 ft.
 - \circ Bank erosion on the outside of meander bends has been noted at four locations on the reaches of Reach 4 at stations 21+00, 24+00, 30+00 and 34+00.
 - At Station 21+00 there is bank erosion on the outside of a meander bend the bank still has a High BEHI with a Moderate NBS. The bank height for this bank section is ~4 ft.
 - At Station 24+00 there is bank erosion on the outside of a meander bend the bank still has a High BEHI with a Moderate NBS. The bank height for this bank section is ~6 ft.
 - At Station 30+00 there is bank erosion on the outside of a meander bend the bank still has a High BEHI with a Moderate NBS. The bank height for this bank section is ~5 ft.
 - At Station 34+00 there is bank erosion on the outside of a meander bend the bank still has a High BEHI with a Moderate NBS. The bank height for this bank section is ~10 ft.

REACH 2 ISSUE PHOTOS

Looking Upstream STA~ 2+50

Looking Downstream at Left Bank Scour near J-Hook STA ~3+10

Looking Downstream at Left Bank Erosion STA ~ 5+00

Looking Downstream at Right Bank Erosion and Migration STA ~ 5+60

Right Bank Slump STA ~ 6+35

Looking Downstream at Left Bank Erosion and Migration STA ~ 8+50

Looking Downstream at Boulder Clusters STA ~ 11+50

STONE MOUNTAIN STATE PARK - EAST PRONG OF THE ROARING RIVER

Right Bank Erosion STA ~ 13+10

Looking Downstream at Left Bank Erosion & Piping Water Around Rock Cross Vane STA ~ 13+80

Looking Downstream at Left Bank Erosion STA ~ 3+00

Right Bank Erosion STA ~ 6+50

Looking Downstream at Right Bank Erosion and Migration STA ~ 8+10

Looking Dowstream at Rock Cross Vane STA~11+00

STONE MOUNTAIN STATE PARK - EAST PRONG OF THE ROARING RIVER

REACH 4 ISSUE PHOTOS

Looking Downstream at Left Bank Erosion and Migration STA \sim 20+00

Looking Downstream at Right Bank Erosion and Migration STA ~ 23+50

Looking Downstream at Right Bank Erosion and Migration STA ~ 23+75

Looking Downstream at Right Bank Erosion & Piping Water around Rock Cross Vane STA ~ 24+40

Looking Downstream at Right Bank Erosion & Piping Water around Rock Cross Vane STA ~ 24+80

Looking Downstream at Left Bank Erosion and Migration STA ~ 28+75

Looking Downstream at Right Bank Erosion and Migration STA ~ 32+50

r						7								
Project Name	Stone	e Mour	ntain											
Cross Section	Reac	h 2 Cr	oss-Section 1											
Feature	Riffle	e												
Date	11	/18/04												
Crew	Bidel	lspach,	Clinton										-	
						_								
	Year 4 - 2	004			ear 3 - 200	3		Year 2 - 20	02		Year I - 2	001	AS	S-BUILT 2000
	2004 Surv	vey		-	2003 Survey	/		2002 Surve	у		2001 Surv	ey	AS-	-BUILT Survey
Station	Elev	vation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevatio	n Notes	Station	Elevation Note
	53.8 13	11.2	Lpin1	53.8	1311.2		53.8	1311.2	LPIN	53.8	1311.0			
	54.0 13	11.2		68.8	1311.5		53.8	1311.1	GRND	57.0	1311.0			
	66.4 13	11.3		80.8	1312.0		60.8	1311.2		61.5	1311.0			
	74.6 13	11.7		89.8	1311.3		67.8	1311.2		66.0	1311.1			
1	82.9 13	11.9		92.8	1309.5		75.8	1311.8		68.0	1311.0			
	89.8 13	11.1		94.8	1308.0		85.8	1311.9		70.0	1311.2			
	92.0 13	09.2		95.8	1306.9		88.8	1311.4		75.3	1311.6			
	94.1 13	07.9		96.3	1305.9		89.8	1311.2		79.0	1311.7			
	95.5 13	06.1		98.0	1305.6		90.3	1311.0		83.5	1311.7			
	96.7 13	06.0		102.3	1305.6		90.8	1310.3		86.0	1311.6			
1	01.6 13	05.3		107.8	1305.8		91.8	1309.5		87.8	1311.3	LBKF		
1	05.9 13	05.5		114.8	1306.0		92.3	1308.7		90.0	1310.8			
1	10.5 13	05.7		120.8	1305.9		93.8	1307.8		91.7	1309.0			
1	13.5 13	05.8		126.3	1305.9		94.3	1307.5		93.3	1307.6			
1	13.6 13	05.8		131.8	1305.8		94.8	1306.7		94.3	1306.7			
1	13.7 13	05.9		138.1	1305.9		95.4	1306.3		94.7	1305.9			
1	23.2 13	05.8		142.3	1305.8		97.3	1305.8		95.0	1305.6			
1	23.2 13	05.8		146.8	1306.4		98.8	1305.3		97.4	1305.5			
1	23.7 13	05.8		148.8	1307.6		99.8	1305.1		99.8	1304.8			
1	29.8 13	05.7		149.4	1308.3		102.8	1305.3		103.4	1305.3			
1	40.5 13	05.7		150.1	1309.9		105.8	1305.5		107.7	1305.4			
1	47.6 13	06.4		150.8	1311.1		108.8	1305.6		110.5	1305.4			
1	48.7 13	07.4		151.8	1311.6		111.8	1305.8		112.0	1305.8			
1	50.8 13	10.9		152.8	1312.0		114.8	1305.9		116.0	1305.6			
i	53.1 13	12.0		154.8	1312.2		118.8	1305.8		119.0	1305.5			
1	56.1 13	12.3		158.8	1312.3		123.8	1306.1		122.0	1305.7			
i	61.1 13	12.0		162.9	1312.2		129.8	1306.0		125.2	1305.8			
1	63.0 13	12.1	Rpin1	162.9	1312.1		134.8	1305.9		127.5	1305.6			
	(2.0 12						100.0	1205.0		100.0	1205.0			

	Year 4 - 2004	Year 3 - 2003	Year 2 - 2002	Year 1 - 2001	AS-BUILT 2000
rea	307.0	296.5	306.0	319.8	
Vidth	61.2	62.0	62.0	61.9	
Iean Depth	5.0	4.8	4.9	5.2	
fax Depth	5.9	5.7	6.1	6.4	
V/D	12.2	13.0	12.6	12.0	

ss Section Reach 2 Cross-Secti ture Pool e 11/18/04	on 2					1 Start		主要	
w Bidelspach, Clinton 2004 2004 2004 2004 0.0 1308.2 1.0 1308.5 1.4.0 1307.7 17.9 1308.3 21.7 1307.5 26.3 1306.4 30.0 1305.9 34.9 1305.5 37.6 1304.7 36.1 1302.8 60.6 1302.8 63.3 1302.6 66.0 1302.1 68.7 1301.4 73.8 1302.7 73.8 1302.7 73.8 1302.7 73.8 1302.7 73.8 1302.7 73.8 1302.7 73.8 1302.1 73.8 1302.1 73.8 1302.1 73.8 1307.1 73.8 1307.1 84.3 1307.0 84.3 1307.0	Year 3 - 2003 2003 Survey Station Elevation Note 0.0 1308.5 LPI 0.0 1308.2 GR 18.0 1308.2 GR 13.0 1306.3 GR 13.0 1307.2 27.0 1306.0 13.0 1305.3 1305.3 36.5 130.5 1305.4 1304.7 43.6 43.6 1304.0 LEW 45.4 1303.6 49.2 1303.1 30.1 56.3 1301.9 60.2 1301.3 62.2 1301.3 62.2 1301.3 61.0 1301.7 68.5 1302.4 70.8 1302.6 72.2 1304.3 72.5 1304.0 73.4 1305.1 75.0 75.4 1305.9 75.4 1306.9 84.5 1306.9 84.5 1306.9 84.5 1306.9 84.5 1306.9 84.5 1305.9 75.4 1305.9 75.4 1306.5 78.0 87.	Year 2 - 2002 2002 Survey Station Elevation Not 2002 Survey 0.0 1308.5 10 0.0 1307.9 12.0 12.0 1307.7 15.0 1307.7 15.0 1308.0 17.0 1308.0 17.0 1308.0 17.0 1308.4 20.0 1307.4 20.0 1307.4 20.0 1307.4 20.0 1305.1 31.5 1305.1 31.5 1305.1 34.0 1304.5 45.5 1304.5 45.5 1304.5 45.5 1304.5 45.5 1304.6 45.5 1304.6 45.5 1304.6 45.5 1304.6 45.5 1304.0 45.5 1304.0 45.5 1304.5 45.5 1304.5 45.5 1304.5 45.0 1303.6	Year 1 - 2001 2001 Survey Station Elevation Notes 0.0 1308.0 1308.0 3.0 1308.0 1308.0 7.8 1307.8 1307.8 13.5 1307.6 1308.3 13.5 1307.6 140.4 20.3 1307.8 1305.2 36.4 1305.2 146.4 50.1 1302.4 59.3 56.1 1302.4 59.3 57.3 1301.4 64.9 64.0 1301.4 65.9 64.1 1304.2 70.7 70.7 1304.2 70.7 71.3 1305.5 1301.4 65.9 1301.4 65.9 70.7 1304.2 70.7 71.2 1305.4 71.2 72.2 1305.4 74.2 73.0 1305.4 74.2 79.8 1307.0 81.9 81.9 1305.9 75.8	AS-BUILT 2000 AS-BUILT Survey Station Elevation Notes	Area Width Max Depth W/D	P Ver 4 - 2004 1556 53.9 56 18.3	Year 3-2003 Year 2-2003 53.4 53.0 5.7 4.6	Year 1 - 2001 15.84 53.9 5.6 18.3	vam @ STA 5+75
		55.0 1302.3	St	tone Mounta	in - Pool				
1310			Cro	ss Section 2	Reach 2				
1309 —					B 14 11				
1308 눧					Banktull	Elev. (appro	x.)		
- 1307									
1303 atio									
E 1304									
1303									
1302 —						X			
1301 —									
1300 -			1	1	1	1			
0	10	20	30	40	50	60	70	80	90
				Distan	ice (feet)				
	→ Yea	nr 4 - 2004	Year 3 - 2003	Year 2 - 2	2002 `	Year 1 - 200)1 AS	-BUILT	2000

100

Project Name	Stone Mou	intain			T							
Cross Section	Reach 2 C	ross-Section	3									
Feature	Riffle											
Date	11/18/0	4										
Crew	Bidelspach	n, Clinton										
Y 2	ear 4 - 2004 004 Survey		¥ 2	/ear 3 - 200 2003 Survey	3		Year 2 - 2002 2002 Survey		Year 1 - 2001 2001 Survey	A	S-BUILT 2 BUILT Su	000 rvey
Station	Elevation	n Notes	Station	Elevation	Notes	Station	Elevation Notes	Station	Elevation Notes	Station	Elevation	Notes
93	2 1308.3		105.7	1308.1		105.7	1307.9	105.7	1308.0	105.7	1308.0	
10:	5.0 1308.2	Lpin	110.7	1307.2		105.7	1307.9	108.7	1307.6	108.6	1307.5	LBKF
10	5.3 1308.1		113.7	1305.8		107.7	1307.8	110.7	1306.8	115.3	1304.6	
108	3.2 1307.9		114.8	1305.4		109.2	1307.6	112.7	1306.0	118.7	1303.8	
110	0.4 1307.2		115.4	1304.0		109.7	1307.4	114.7	1305.1	124.2	1303.1	
115	2.2 1306.2		117.2	1303.4		110.7	1307.1	115.0	1304.2	127.0	1303.4	
114	1.0 1305.2		121.7	1303.4		111.7	1306.6	118.5	1303.6	132.8	1302.9	
11:	.4 1304.2		125.3	1303.4		112.7	1306.1	121.7	1303.2	136.6	1303.4	
11	.4 1303.9		127.5	1303.5		113.7	1305.8	124.7	1303.0	142.6	1303.1	
120	0.0 1303.4		132.2	1303.3		114.7	1305.2	126.7	1303.3	146.9	1303.8	
12:	5.5 1303.4		137.7	1303.1		115.2	1304.4	132.7	1302.8	153.4	1306.3	DDVE
13.	2.8 1302.8		142.0	1303.1		115.7	1304.0	134.7	1303.0	168.6	1307.5	KBKF
140	1302.1		146.1	1303.1		11/.2	1303.5	137.2	1303.5	184.0	1307.4	
14:	5.7 1301.8		148.3	1303.4		118.7	1303.3	142.7	1303.2			
140	5.0 1301.7		149.3	1304.0		120.7	1303.3	145.4	1303.6			
145	1.0 1302.3		150.8	1305.5		122.7	1303.3	140.7	1304.3			
15.	2.9 1303.8		152.7	1306.2		124.7	1303.2	149.7	1305.0			
15.	5.0 1306.0		154.7	1300.5		120.7	1303.2	151.7	1305.9			
15.	5.1 1306.3		160.0	1306.8		128.7	1303.0	155.7	1306.0			
15.	1306.1		160.0	1306.8		130.7	1303.0	159.9	1300.7	1		
15	1306.5					131.7	1303.0	1				
150	0.2 1306.5					155./	1303.3	1		1		
159	9.1 1306.6	Rpin				136.7	1303.1	1				
163	5.4 1307.6					139.7	1303.0	1		1		
						141.7	1303.0	1				
						144.7	1303.3	1				
						146.7	1303.6	1				
						147.7	1303.9	1				

	Year 4 - 2004	Year 3 - 2003	Year 2 - 2002	Year 1 - 2001	AS-BUILT 2000	T	Bench -2004
Area	194.5	169.6	169.5	166.2	165.5		144.3
Width	60.1	58.3	59.7	60.2	60.0		44.0
Mean Depth	3.2	2.9	2.8	2.8	2.8		3.3
Max Depth	5.8	4.5	4.5	4.7	4.6		4.8
W/D	18.6	20.0	21.0	21.8	21.7	1	13.4

Project Name	5	stone Mou	ntain			T								
Cross Section	F	Reach 2 C	ross-Section 4											
Feature	F	Riffle												
Date		11/18/04	4											
Crew	E	Bidelspach	, Clinton											
	Year	4 - 2004		1	ear 3 - 200	3		Year 2 - 2002		Year I - 20	001	A	S-BUILT 2	000
a	2004	Survey			003 Survey	·	a	2002 Survey	G 1 H	2001 Surv	ey	AS	-BUILT Su	rvey
Station	10.0	Elevation	Notes	Station	Elevation	Notes	Station	Elevation Notes	Station	Elevation	n Notes	Station	Elevation	Notes
	10.6	1303.5		17.7	1303.7		17.7	1304.3	20.0	1303.8		0.0	1303.1	
	23.0	1303.7	Lpin	24.7	1302.8		20.7	1303.7	22.0	1303.1	LPIN	22.0	1303.6	LBKF
	24.2	1303.5		28.7	1302.5		22.7	1303.3	25.0	1302.3		24.4	1303.0	
	30.8	1302.7		32.7	1301.3		24.7	1302.7	28.0	1302.0		33.3	1301.3	
	31.5	1302.5		34.2	1301.0		26.7	1302.6	32.0	1301.6		38.2	1300.4	
	34.1	1301.3		37.7	1300.5		29.2	1302.5	34.8	1301.0		44.0	1300.9	
	36.6	1301.1		48.2	1299.4		30.2	1302.1	38.0	1300.4		46.7	1300.9	
	40.8	1300.3		54.3	1299.5		31.7	1301.8	47.0	1300.4		47.5	1300.9	
	43.5	1300.7		56.7	1300.0		34.2	1301.9	52.0	1300.6		52.0	1300.8	
	49.5	1300.0		62.7	1300.2		35.7	1301.2	55.0	1300.2		55.4	1300.0	
	53.9	1299.9		67.4	1300.4		38.2	1301.0	59.0	1300.7		58.0	1300.0	
	60.7	1300.3		69.9	1300.9		40.2	1301.0	63.0	1300.7		60.5	1300.7	
	67.5	1300.1		/2.1	1301.9		42.5	1301.0	68.3	1301.1		61.0	1300.8	
	69.1	1300.5		74.2	1303.3		44.7	1300.9	72.0	1302.6		66.0	1300.8	
	69.2	1301.1		75.9	1303.9		46.7	1300.6	74.0	1303.6		68.0	1301.2	
	/1.4	1303.5		//./	1304.3		47.7	1300.3	//.0	1304.5		69.2	1301.7	
	73.9	1303.9		82.0	1305.1		48.5	1300.5	80.0	1305.3	D D D L	71.3	1301.7	DDVE
	/6.0	1304.4		82.0	1305.1		52.0	1300.3	81.2	1305.3	RPIN	/3.4	1303.4	RBKF
	79.6	1305.2					54.2	1300.4				81.4	1305.3	RPIN
	81.1	1305.3					56.2	1300.4				143.0	1305.0	
	81.5	1305.3	Rpin				58.7	1300.3						
	84.3	1305.6					61.2	1300.5						
	91.9	1305.3					62.7	1300.8						
I							65.7	1300.8	1			1		
							67.7	1301.0	1			1		
							68.7	1301.3	1			1		
							69.7	1301.6						
							70.7	1302.3	1			1		

	Year 4 - 2004	Year 3 - 2003	Year 2 - 2002	Year 1 - 2001	AS-BUILT 2000
Area	130.6	156.5	124.8	136.3	
Width	48.4	56.5	53.0	54.0	
Mean Depth	2.7	2.8	2.4	2.5	
Max Depth	3.8	4.3	3.4	3.5	
W/D	17.9	20.4	22.5	21.4	

Project Name	3	Stone Mou	ntain			T								
Cross Section	1	Reach 4 C	ross-Section 1											
Feature	1	Riffle												
Date		11/18/04	1											
Crew	1	Bidelspach	, Clinton											
	Year 2004	4 - 2004 Survey		1	r ear 3 - 200 2003 Survey	3		Year 2 - 200 2002 Survey	2		Year 1 - 2001 2001 Survey	A	S-BUILT 2 -BUILT Su	000 rvey
Station		Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation Notes	Station	Elevation	Notes
	27.0	1291.3	Left Pin	27.0	1291.3		27.0	1291.3	LPIN	27.0	1291.3	0.0	1290.2	
	31.8	1290.7		30.0	1290.7		31.0	1291.0	LTOB	31.0	1291.0	27.0	1291.3	
	33.8	1289.9		33.0	1289.7		34.1	1290.0		33.0	1290.4	32.0	1290.6	
	35.2	1289.1		36.0	1288.5		35.0	1289.3		35.0	1289.2	33.0	1289.9	LBKF
	35.9	1288.2		37.5	1287.3		36.1	1289.3		30.0	1289.0	35.0	1288.0	
	36.1	1286.3		38.3	1284.9		39.7	1287.5		38.0	1288.3	38.5	1287.4	
	37.0	1285.6	water	39.0	1284.2		40.0	1285.3	LEW	39.0	1287.6	42.0	1286.0	
	38.4	1285.0		40.0	1284.2		42.4	1284.9		40.0	1280.9	49.0	1285.4	
	40.1	1285.0	NCT	44.0	1284.4		4/.5	1285.1		41.0	1286.3	60.2	1284.8	
	41.9	1284.9	721	55.0	1284.0		22.8 62.4	1285.5		42.0	1285.7	65.4	1285.4	
	40.7	1285.0		72.0	1204.0		68.0	1205.5		42.2	1203.2	65.7	1203.4	
	54.4	1285.0		72.0	1285.1		70.6	1285.3		42.2	1203.4	68.5	1203.4	
	50.7	1205.1		74.0	1200.4		70.0	1205.5	DEWAVE	52.0	1205.1	60.0	1205.5	
	63.1	1285.1		85.0	1289.4		73.4	1285.0	BAD	57.0	1285.1	78.3	1285.6	
	65.1	1285.1		92.3	1289.0		744	1286.6	DAK	60.0	1285.2	83.4	1285.0	
	66.9	1285.1		/2.0	1207.0		76.2	1286.7		64.0	1285.2	90.0	1289.7	RBKE
	69.4	1285.3					78.8	1286.7		68.0	1285.2	105.0	1290.5	
	71.4	1285.1					81.0	1286.4		71.0	1285.2	107.0	1288.6	
	72.1	1285.4					87.3	1288.3		72.0	1285.4	107.0	00.0	
	73.2	1286.6					89.2	1288.8		75.0	1285.9			
	74.0	1287.3					90.0	1289.2	RTOB	79.0	1286.0			
	75.5	1287.6					91.0	1289.5		82.0	1286.4			
	77.0	1288.5					92.3	1289.6		86.0	1287.8			
	79.4	1288.6								88.0	1288.9			
	81.8	1288.3								89.0	1289.4			
	85.8	1288.1								90.0	1289.6			
i	86.9	1288.7					1			1				
	01.4	1280.5	Dight Din											

	Year 4 - 2004	Year 3 - 2003	Year 2 - 2002	Year 1 - 2001	AS-BUILT 2000		Bench 2004
Area	196.1	215.8	202.5	206.6	206.3		131.6
Width	57.7	59.3	58.2	57.0	57.0		50.6
Mean Depth	3.4	3.6	3.5	3.6	3.6		2.6
Max Depth	4.9	5.6	4.9	4.7	5.0		3.7
W/D	16.9	16.3	16.7	15.7	15.7		19.5
	•	•				•	

Project Name		Stone Mou	ntain			T									
Cross Section	. P	Reach 4 C	ross-Section 2	2											
Feature	, P	Pool													
Date		11/18/04	1												
Crew	J	Bidelspach	, Clinton												
1	Year	4 - 2004		1	Year 3 - 200	3		Year 2 - 200	02		Year 1 - 20	01	Α	S-BUILT 2	000
i	2004	Survey			2003 Surve	Y		2002 Surve	у		2001 Surve	у	AS	5-BUILT Su	rvey
Station		Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
	-8.3	1289.5		19.0	1289.6	Left Pin	19.0	1289.6	Left Pin	19.0	1289.6	Left Pin	0.0	1289.0	
	-8.9	1289.7		19.0	1289.5		22.0	1289.0		21.0	1289.3		19.0	1289.1	LBKF
1	5.2	1289.5		21.0	1289.2		22.8	1287.6		22.0	1289.0		22.1	1288.4	
	17.3	1289.5		22.5	1288.3		25.8	1286.6		22.4	1287.9		23.0	1287.0	
	19.0	1289.6	Left Pin	30.0	1284.6		27.9	1286.1		24.0	1287.0		25.5	1286.0	
	21.0	1289.3		32.0	1283.9		31.0	1285.2		25.0	1286.6		31.0	1283.9	
	26.0	1286.8		35.0	1283.8		32.0	1284.6		26.0	1286.1		41.0	1283.5	
	27.9	1285.8		40.0	1283.5		35.0	1283.8		27.0	1285.7		48.0	1283.0	
	29.1	1284.7	Water	44.0	1282.9		40.3	1283.6		28.0	1285.4		52.0	1283.3	
	29.6	1284.3		50.0	1281.8		43.6	1282.9		30.0	1284.8		52.0	1283.9	
	31.7	1283.9		52.0	1282.0		44.8	1282.6		31.0	1284.5		52.6	1285.8	
	35.1	1283.3		54.0	1282.2		51.0	1282.6		32.5	1284.3		56.8	1286.7	
	35.6	1283.0		56.9	1284.7		52.9	1282.7		36.0	1284.0		62.7	1289.6	RBKF
	40.4	1282.5		59.0	1286.6		53.2	1282.9		42.0	1283.5		67.0	1293.7	
	43.6	1282.0		60.5	1288.6		53.2	1284.7		47.0	1282.7		68.6	1293.9	
	49.2	1281.5		62.0	1289.6	RBKFL	53.5	1286.2		51.0	1283.0		80.0	1293.9	
	55.2	1281.7		64.5	1291.4		56.5	1287.1		52.4	1283.4		100.0	1293.9	
	55.7	1284.0		68.0	1294.3	RTOB	61.1	1289.3	BKF	53.0	1286.3				
	56.5	1284.6	Water				62.7	1290.2		55.0	1286.8				
	58.2	1286.1					63.0	1290.9		56.0	1287.0				
	61.5	1289.7					64.1	1291.3		57.0	1287.3				
	63.5	1290.5					65.3	1292.7		59.0	1288.6				
	65.5	1292.8					67.0	1294.0		62.0	1289.9				
	67.5	1294.2					68.6	1294.4		64.0	1291.3				
	79.4	1294.4								67.0	1294.1				
	99.7	1294.5								68.4	1294.4				
	117.4	1294.0								68.4	1294.4				
	127.2	1294.1													
	68.0	1294.4	Right Pin							1			1		

Area	Year 4 - 2004 224.4	Year 3 - 2003 210.6	Year 2 - 2002 182.8	Year 1 - 2001 179.6	AS-BUILT 2000 189.6
Width	42.5	41.5	42.1	43.0	43.7
Mean Depth	5.3	5.1	4.3	4.2	4.3
Max Depth	8.1	7.8	6.9	6.8	6.6
W/D	8.1	8.2	9.7	10.3	10.1

Project Name		Stone Mou	ntain			T									
Cross Section		Reach 4 C	ross-Section 3												
Feature	1	Pool													
Date		11/18/04	1												
Crew		Bidelspach	, Clinton												
	Year	4 - 2004			Year 3 - 200	3		Year 2 - 200	2		Year I - 20	01	A	AS-BUILT 2	000
See. down	2004	Survey	Netter	Cerebra .	2005 Surve	Neter	See.	2002 Survey	Neter	Cerebra.	2001 Surve	y Notes	A2	S-BUILT Su	rvey
Station		Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
	-6.9	1284.4		5.5	1282.2		-8.0	1284.5	Left Pin	-12.5	1284.5	Left Pin	-3.0	1285.0	LDVD
	3.1	1281.9		10.0	1281.9		2.0	1282.1		-8.5	1285.8		3.5	1282.9	LBKF
	17.5	1282.8		11.5	1282.5		7.0	1281.5		-0.5	1283.0		10.0	1281.7	
	24.5	1285.5		19.5	1282.9	4 I	17.0	1281.0		-2.5	1282.0		50.8	1281.1	
	31.0	1283.0		24.5	1283.2	top bar	31.0	1282.5		1.5	1281.8		47.0	1280.4	
	30.0	1202.2		31.5	1202.0		35.4	1201.0		15.5	1282.0		52.0	1270.2	
	20.2	1201.2	Watar	30.5	1201.7		28.0	1280.8		20.5	1202.1		62.2	1279.0	
	41.0	1280.5	water	40.5	1280.9	lan	42.0	1280.2		26.5	1201.0		65.4	12/9.7	
	41.0	1280.0		45.5	1200.4	iew	42.0 50.0	1277.9		30.5	1281.0		68.3	1280.5	
	48.6	1230.0		40.5	1279.2		56.7	1278.0		43.5	1280.5		71.0	1281.0	
	54.2	1277.7		51.5	1278.3		61.0	1279.0		45.5	1279.9		80.0	1282.1	
	59.6	1278.3		53.5	1277.9		69.4	1280.1		47.5	1279.5		89.0	1286.5	RBKF
	65.1	1278.8		55.5	1277.7		72.5	1280.9		49.5	1278.3		95.0	1286.5	
	68.2	1279.4		57.5	1277 7		73.3	1281.4		51.5	1277.5		97.0	1286.6	
	74.6	1280.4	Water	58.5	1277.7		77.3	1282.3		55.5	1277.7				
	76.2	1282.5		62.5	1278.2		82.0	1283.0		57.5	1278.1				
	82.3	1283.3		66.5	1279.9		89.0	1286.1		60.5	1279.2				
	86.5	1285.0		69.5	1279.8		97.0	1286.7		61.0	1279.5				
	89.3	1285.9		72.5	1279.7		104.0	1287.0	Right Pin	61.5	1279.6		1		
	96.0	1286.4		74.5	1280.4	rew	113.2	1297.8		67.0	1280.8				
	107.2	1287.0		77.0	1281.4					68.5	1280.9				
	114.0	1287.8	Right Pin	79.8	1282.8					70.5	1281.1				
	118.3	1288.2	č	88.7	1286.1					72.0	1281.4				
				94.5	1286.1					75.5	1282.0				
				103.5	1286.8					79.5	1282.5				
				114.0	1287.8	Right Pin	1			82.0	1282.7		1		
				114.0	1287.7					87.5	1286.1				
1										90.5	1286.7		1		

	Year 4 - 2004	Year 3 - 2003	Year 2 - 2002	Year 1 - 2001	AS-BUILT 2000
rea	162.2	173.0	181.3	170.0	183.9
Vidth	58.0	61.3	65.0	66.0	70.0
Aean Depth	2.8	2.8	2.8	2.6	2.6
Aax Depth	5.5	5.6	5.4	5.7	5.0
V/D	20.7	21.7	23.3	25.6	26.7

Project Name	•	Stone Mour	ntain			T								
Cross Section		Reach 4 Ci	ross-Section 4											
Feature		Riffle												
Date		11/18/04	ļ.											
Crew		Bidelspach,	Clinton											
						-								
	Year	4 - 2004			Year 3 - 200	3		Year 2 - 200	12		Year 1 - 20	01	A	S-BUILT 2000
	2004	Survey			2003 Survey	r		2002 Survey	y		2001 Surve	у	AS	-BUILT Survey
Station		Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation Notes
	-47.0	1287.2		0.0	1284.9	Left Pin	0.0	1284.9	Left Pin	0.0	1284.9	Left Pin		
	-28.9	1287.3		3.0	1283.6		2.9	1283.7		1.0	1284.7			
	-17.6	1285.8		8.0	1283.4		6.4	1283.2		2.0	1284.2			
	0.0	1284.9	Left Pin	12.0	1283.1		11.9	1283.1		3.0	1283.6			
	0.5	1284.7		20.4	1279.8		15.9	1281.1		3.6	1283.4			
	3.7	1283.5		20.7	1279.0		21.0	1279.9		5.0	1283.2			
	11.5	1283.1		23.0	1278.8		25.1	1279.5		11.0	1283.2	LBKF		
	14.0	1282.2		27.0	1278.6		30.4	1279.2		12.0	1283.0			
	17.5	1281.4		31.5	1278.9		31.7	1279.1		13.0	1282.5			
	19.7	1280.1		33.5	1279.1		35.0	1279.1		14.0	1281.8			
	20.1	1279.8	Water	36.0	1279.2		44.0	1279.4		15.0	1281.3			
	20.7	1278.9		39.4	1279.3		49.0	1279.5		16.0	1280.8			
	24.1	1278.7		42.4	1279.5		51.3	1279.8		17.0	1280.6			
	27.0	1278.1		46.0	1279.9		52.3	1280.3		18.0	1280.2			
	28.4	1278.3	Thalweg	45.2	1279.8		55.8	1282.4		19.0	1280.0			
	32.2	1278.7		50.0	1280.0		58.2	1283.7		22.5	1279.7			
	34.6	1279.0		53.5	1280.8		62.0	1284.0		30.0	1279.4			
	42.5	1279.4		58.0	1283.7		65.0	1284.0	Right Pin	34.0	1279.3			
	44.9	1279.7	Water	64.8	1283.9	Right Pin				35.5	1279.2		1	
	52.8	1280.4								39.0	1279.4			
	58.0	1283.8	Bankfull							45.5	1279.5		1	
	58.7	1283.8								50.8	1279.6		1	
	64.4	1283.9	Right Pin							52.0	1280.1			
	71.8	1284.7								53.0	1280.8			
										54.0	1281.4			
										55.0	1282.0			
										56.0	1282.5			
										57.0	1283.2	RBKF		
										58.6	1283.7		1	

						-							
Project Name	e	Stone Mou	intain										
Cross Section	n	Reach 4 C	cross-Section	5									
Feature		Pool											
Date		11/18/0	4										
Crew		Bidelspach	n, Clinton										
	Year	4 - 2004			Year 3 - 200	13		Year 2 - 2002		Year 1 - 2	001	Α	AS-BUILT 2000
	2004	Survey			2003 Surve	y		2002 Survey		2001 Surv	/ey	AS	S-BUILT Survey
Station		Elevatior	Notes	Station	Elevation	Notes	Station	Elevation Notes	Station	Elevatio	n Notes	Station	Elevation Notes
	-37.8	1280.7		0.0	1281.1				0.0	1281.1			
	-18.3	1281.6		14.0	1279.9				5.0	1280.7			
	-7.6	1281.6		22.0	1279.2				6.5	1280.3			
	0.0	1281.1	Left Pin	29.0	1279.1				8.0	1280.2			
	5.2	1280.7		33.0	1278.5				10.0	1280.4			
	5.4	1280.7	Bankfull	36.0	1277.7				13.0	1280.2			
	8.3	1280.4		40.0	1277.4				16.0	1279.9			
	17.6	1279.7		44.0	1277.1				19.0	1279.7			
	22.8	1279.2		48.0	1276.8				21.0	1279.3	LBKF		
	30.6	1279.0		51.5	1276.5				23.0	1278.9			
	33.7	1278.5		54.0	1276.3				26.0	1278.6			
	37.0	1277.7		58.0	1275.7				29.0	1278.1			
	46.2	1276.7		61.0	1275.0				34.8	1277.4			
	48.3	1276.6		66.0	1273.9				38.5	1277.0			
	54.1	1276.1		70.0	1273.3				42.5	1276.6			
	59.5	1275.4		73.5	1273.4				46.5	1276.3			
	61.9	1275.1		76.5	1274.2				49.3	1276.0			
	67.4	1273.9		82.4	1276.1	rew			53.0	1275.3			
	73.0	1273.4		85.0	1278.3				57.0	1275.0			
	75.6	1273.7		92.0	1283.0	rtob			62.0	1274.7			
	78.2	1274.1		100.0	1282.8	tpin			66.0	1274.3			
	83.2	1275.5		1			1		68.0	1274.3		1	
	84.6	1276.3							71.0	1274.4			
	84.8	1277.5							75.0	1275.0			
	87.4	1279.2							78.0	1275.9			
	92.0	1282.3							82.0	1276.9			
1	93.4	1283.0							84.4	1277.4			
1	100.9	1282.8	N (1) N (1			1		85.0	1277.6		1	
		1.103.0	It - mint Dim						- N// ()	1.1.000	11111Z E		

Photo of Cross-Section 5 - Reach 4 - Looking Downstream @ STA 24+10

	Year 4 - 2004	Year 3 - 2003	Year 2 - 2002	Year 1 - 2001	AS-BUILT 2000
Area	182.6	175.1		183.6	
Width	56.9	56.0		60.0	
Mean Depth	3.2	3.1		3.1	
Max Depth	5.8	5.8		4.8	
W/D	17.7	17.9		19.6	

Project Name		Stone Mour	ntain			T									
Cross Section		Reach 4 Ci	ross-Section 6	5											
Feature		Riffle													
Date		11/18/04	Ļ												
Crew		Bidelspach,	, Clinton												
	Year	4 - 2004			Year 3 - 200	3		Year 2 - 200	12		Year 1 - 20	01	А	AS-BUILT 2000	
	2004	Survey			2003 Surve	y .		2002 Survey	y		2001 Surve	y	AS	S-BUILT Survey	
Station		Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation Notes	s
	-25.3	1280.1		0.0	1280.0	Left Pin	0.0	1280.0	Left Pin	0.0	1280.0	Left Pin			
	-4.8	1279.9		5.0	1279.7		9.0	1279.0	LTOB	3.5	1280.0				
	0.0	1280.0	Left Pin	8.5	1279.0	ltob	10.3	1277.7		8.0	1279.2	LBKF			
	8.5	1278.7		11.5	1275.1		11.9	1275.2		11.0	1275.7				
	11.3	1274.6		13.0	1273.0	lew	14.2	1274.0		13.0	1274.2				
	12.4	1273.9		13.5	1271.1		14.7	1273.1		15.3	1273.1				
	12.7	1271.4		16.5	1270.9		14.7	1270.8	LEW	18.6	1272.8				
	16.7	1270.8		21.0	1271.9		17.7	1271.7		22.2	1272.5				
	19.6	1271.6		24.6	1272.2		21.8	1272.1		24.5	1272.3				
	23.8	1272.3		30.2	1272.5		27.0	1272.5		28.6	1272.4				
	31.1	1272.8		36.0	1272.9		29.6	1272.4		31.2	1272.4				
	32.9	1273.0	Water	40.0	1272.7		34.4	1273.0		36.2	1272.5				
	37.9	1273.1		41.8	1272.8	rew	38.8	1273.4		39.6	1272.2				
	42.0	1273.1		43.0	1273.4		42.4	1273.4		41.6	1272.6				
	44.8	1274.2		48.0	1275.0		47.0	1274.2		42.8	1272.9				
	48.1	1275.6		53.7	1277.8	rtob	54.0	1278.3	RTOB	43.7	1273.5				
	50.9	1277.1		60.0	1278.3		58.4	1278.3		46.5	1274.3				
	54.1	1278.3	Right Pin	64.0	1278.3		62.0	1278.1		47.3	1274.5		1		
	56.0	1278.2		66.4	1278.1		66.4	1278.2		50.5	1276.5				
	62.4	1278.5					1			54.3	1278.2	RBKF	1		
	71.9	1278.2								58.0	1278.1				
										61.3	1278.4				
							1			65.5	1278.1		1		
										66.4	1278.1				
1															
1															
1							1			1			1		

Project Name	1	Stone Mour	ntain			ľ								
Cross Section	1	Reach 4 Cr	oss-Section 7	,										
Feature	1	Pool												
Date		11/18/04												
Crew	1	Bidelspach,	Clinton											
	Year	4 - 2004			Year 3 - 200	3		Year 2 - 200	2		Year 1 - 20	01	A	S-BUILT 2000
	2004	Survey			2003 Survey			2002 Survey	Y		2001 Surve	у	AS	-BUILT Survey
Station		Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation Notes
	-22.6	1274.3					0.0	1272.8		0.0	1273.1	LBKF		
	-10.5	1273.7					6.0	1272.3		8.0	1272.7			
	1.4	1272.9					15.0	1272.1		17.0	1272.3			
	11.3	1272.3					22.0	1271.3		23.7	1271.4			
	17.6	1272.2	Bankfull				28.0	1270.6		28.4	1270.9			
	19.3	1272.0					34.0	1270.3		31.0	1270.5			
	24.0	1271.6					40.7	1269.6		37.7	1269.6			
	25.1	1271.3					41.4	1269.1	LEW	40.6	1269.4			
	32.6	1271.0					42.6	1268.4		42.7	1269.1			
	40.0	1269.8					44.5	1267.9		45.9	1268.1			
	42.3	1269.1	Water				46.8	1267.1		48.5	1266.9			
	46.8	1268.3					49.6	1265.9		51.6	1266.4			
	46.8	1268.3					54.4	1265.0		53.5	1265.7			
	53.7	1266.8					60.0	1266.3		54.7	1265.9			
	57.6	1265.8	Max Pool				62.3	1270.6		55.8	1265.9			
	58.1	1266.0					66.5	1273.1	RTOB	56.7	1266.2			
	59.5	1266.2					68.0	1273.5		57.8	1267.0			
	61.4	1267.6					71.4	1274.0	RPIN	59.8	1269.6			
	63.1	1268.4								62.0	1270.5			
	64.7	1269.2	Water							63.0	1271.7			
	66.5	1270.1								64.5	1272.4			
	66.7	1272.9								67.6	1273.8	RBKF	1	
	66.9	1273.4								69.3	1273.8			
	71.4	1274.0	Right Pin							71.4	1274.0		1	
	74.5	1273.8								1			1	
	79.2	1273.9												
	83.7	1274.0								1			1	
1	93.7	1278.9												
1	13.2	1279.0					1			1			1	

Point	Station	Elevation	Description	Point	Station	Elevation	Description	Point	Station	Elevation	Description	Point	Station	Elevation Description
27	31.0	1306.02	Thalwoo	20	31.0	1306.9	Water	100	40.49	1311 53	IRKE	10	3 194.00	1311 94 DDKE
20	45 16	1304.68	Thalweg	31	61.68	1306.85	Water	00	80.27	1312.85	LBKE	10	1 238.0	1311 3 RBKE
30	60.72	1304.8	Thal-ground	33	94.53	1306.82	Water	101	89.63	1312.00	LBKE	10	5 315.7	1310 53 RBKE
32	94.94	1305.99	Head of Riffle	35	138.31	1306.53	Water	.01	160.15	1312.1	I BKF	10	3 387.27	1309.82 RBKF
34	138.93	1305.08	Thalweg	37	158.18	1306.54	Water	97	248.49	1311.39	I BKF	10	7 453.91	1308.32 RBKF
40	154	1305.65	Head of Run	ç	202.76	1306.43	Water	96	292.18	1311.29	I BKF	10	3 526.94	1307.22 RBKF
36	167.6	1305.8	Thalweg	39	203.44	1306.42	Water	95	323.2	1309.46	I BKF	10	569.47	1307.31 RBKF
38	204.32	1305.8	Head of Riffle	42	208.72	1306.42	Water	94	387.77	1309.5	LBKF	11	0 615.56	1306.68 RBKF
41	209	1305.78	Head of Riffle	44	218.73	1306.33	Water	93	444.83	1308.34	LBKF	27	4 619.46	1306.52 RBKF
43	220.35	1305.72	Head of Riffle	46	253.14	1305.5	Water	92	500.24	1308.49	LBKF	11	1 634.57	1307.58 RBKF
47	253.24	1304.81	Head of Run	50	274.58	1305.49	Water	91	551.94	1307.91	LBKF	11:	2 661.79	1308.25 RBKF
49	274.78	1304.21	Head of Pool	51	288.38	1305.54	Water	89	553.54	1307.81	LBKF	19	3 727.98	1307.17 RBKF
52	288.52	1303.58	Max Pool	54	299.98	1305.51	Water	88	619.2	1307.12	LBKF	19	7 787.78	1307.16 RBKF
55	300.83	1302.96	Thalweg	59	333.35	1305.48	Water	199	684.23	1308.41	LBKF	19	896.32	1306.89 RBKF
53	301.24	1302.66	Max Pool	60	334.1	1305.47	Water	228	716.82	1307.82	LBKF	19	5 976.85	1306.82 RBKF
61	350.9	1303.81	Thalweg	62	351.15	1305.46	Water	200	719.15	1308.09	LBKF	19	2 1049.22	1304.55 RBKF
63	369.72	1305.05	Rock Vane	64	369.3	1305.27	Water	229	736.39	1307.89	LBKF	19	4 1068.93	1305.53 RBKF
67	376.45	1303.81	Max Pool	68	376.78	1305.15	Water	230	764.85	1306.97	LBKF	19	0 1105.5	1304.65 RBKF
73	384.52	1303.01	Thalweg	72	384.65	1304.78	Water	231	808.23	1307.57	LBKF	19	1 1106.32	1304.66 RBKF
71	401.13	1302.22	Max Pool	70	400.33	1304.8	Water	232	835.5	1305.94	LBKF	19	3 1122.2	1303.94 RBKF
69	401.89	1302.11	Max Pool	75	421.04	1304.76	Water	233	874.3	1306.81	LBKF	18	9 1148.13	1303.76 RBKF
74	420.24	1302.52	Thal-ground	77	449.77	1304.63	Water	234	902.96	1305.94	LBKF	18	3 1201.83	1304.92 RBKF
76	449.25	1303.83	Head of Riffle	79	491.05	1304.36	Water	235	927.53	1306.99	LBKF	18	7 1243.12	1304.99 RBKF
78	490.86	1303.3	Head of Run	81	548.21	1304.19	Water	236	952.45	1306.56	LBKF	18	5 1315.64	1304.19 RBKF
80	548.44	1303.47	Head of Pool	83	553.86	1304.2	Water	237	972.12	1306.26	LBKF			
82	553.71	1303.41	Thalweg	285	5 573.92	1303.93	Water	238	988.41	1305.84	LBKF			
84	594	1302.3	Head of Pool	294	576.39	1303.93	Water	239	1010.11	1305.57	LBKF			
86	614.76	1301.11	Max Pool	85	594.39	1304.05	Water	240	1030.08	1305.03	LBKF			
117	660.66	1302.59	Thal-ground	87	614.82	1304.07	Water	241	1064.05	1304.6	LBKF			
119	723.58	1303.36	Head of Riffle	118	660.03	1303.95	Water	242	1094.62	1305.06	LBKF			
121	725.96	1303.89	Rock Vane	215	689.93	1303.9	Water	243	1125.29	1304.57	LBKF			
123	/39./5	1302.49	Inalweg	209	696.59	1303.93	vvater	244	1140.85	1304.49	LBKF			
122	743.05	1302.55	Rock vane	120	723.09	1303.9	water	268	1180.29	1303.65				
120	115.03	1302.85	Head of Run	124	740.11	1303.52	Water	209	1247.43	1304.14	LBKF			
128	070.42	1302.39	Head of Rime	12/	//5.03	1303.39	Water	270	1201.02	1304.0				
130	970.42 1005.6	1200.22	Max Pool	123	030.12	1303.34	Water	271	1302.00	1303.0				
143	1069.09	1200.00	That ground	136	070.1	1302.45	Water	272	1360.57	1303.71				
145	1006.00	1301.39	Head of Piffle	140	1005.51	1302.40	Water	215	1303.37	1303.21	LDN			
152	1108.82	1299.87	Max Pool	144	1068.58	1302.00	Water							
154	1146 57	1299.79	Max Pool	146	1096.50	1302.10	Water							
157	1174.42	1299.91	Thal-ground	153	1110.49	1301.53	Water							
160	1203.89	1300	Head of Riffle	150	1114.8	1301.52	Water							
164	1248.8	1298.79	Max Pool	155	1146.91	1301.24	Water							
171	1320.41	1300.47	Rock Vane	158	1174.86	1301.26	Water							
173	1331.09	1296.36	Max Pool	161	1203.48	1301.2	Water							
176	1370.97	1297.69	Thal-ground	251	1206.26	1301.05	Water							
334	1382.56	1298.12	Thal-ground	165	1248.65	1300.81	Water							
179	1384.08	1298.78	Rock Vane	168	1259.06	1300.79	Water							
184	1403.98	1296.73	Max Pool	170	1290.21	1300.79	Water							
345	1441.67	1294.94	Thal-ground	172	1320.07	1300.62	Water							
358	1492.4	1296.61	Head of Riffle	175	5 1341.1	1299.24	Water							
358	1492.4	1296.61	Head of Riffle	322	1355.63	1299.28	Water							
				177	1371.45	1299.35	Water							
				332	1382.93	1299.37	Water							
				180	1383.97	1299.29	Water							
				183	1400.73	1298.4	Water							
				185	1405.3	1297.88	Water							
				355	1447.06	1297.43	Water							
				357	1476.92	1297.43	vvater							
				359	1492.78	1297.37	vvater							

Point	Station	Elevation	Description	Point	Station	Elevation	Description	Point	Station	Elevation	Description	Point	Station	Elevation Description
204	6.76	1005 10	Thelwoo	20	0 140 10	1007 10	Water	550	252.40	1200 54	IPKE		242.60	1200 46 DBKE
394	18.05	1200.12	Thalweg	30	5 -143.10 7 _121.54	1207.10	Water	545	-202.40	1290.04		54	-243.08	1290.40 RDRF
396	21.59	1285.06	Thalweg	38	5 -112.72	1287.14	Water	541	-143.02	1289.85	LBKF	55	-207.49	1289 99 RBKE
400	29.77	1285.02	Head of Pool	39	5 6.7	1287.15	Water	539	99.9	1289.6	LBKF	54	-201.02	1290.11 RBKF
390	47.88	1284.99	ground	53	6 27.19	1287.13	Water	533	6.44	1288.06	LBKF	544	-150.56	1290.16 RBKF
398	47.95	1283.56	Max Pool	40	1 29.47	1287.13	Water	529	52.2	1289.41	LBKF	543	-103.17	1290.28 RBKF
402	65.57	1284.42	ground	39	1 47.93	1287.13	Water	517	80.45	1288.56	LBKF	540	67.74	1289.94 RBKF
388	71.1	1285.05	Max Pool	39	9 48.97	1287.04	Water	522	125.1	1289.69	LBKF	534	49.41	1290.75 RBKF
404	85.2	1285.12	Thalweg	40	3 66.11	1287.01	Water	511	250.79	1289.19	LBKF	533	24.22	1290.57 RBKF
406	103.5	1285.76	Thalweg	38	9 71.19	1287.09	Water	510	288.6	1289.18	LBKF	530	9.76	1289.37 RBKF
410	120.3	1285.34	Head of Pool	40	5 85.19	1286.99	Water	508	334.83	1287.83	LBKF	52	34.01	1289.27 RBKF
412	129.02	1284.5	Max Pool	40	103.49	1287	Water	504	449.94 E01.96	1207.19		52	0 114.1	1200.1 RBKF
414	154.94	1204.94	Thalweg	40	9 103.74 1 122.42	1286 71	Water	500	588.85	1280 58		51	0 173.40	1207.79 RDRF
421	159.91	1285 42	Thalweg	41	3 129.02	1286.69	Water	659	630.62	1289.59	LBKF	51	242.22	1289 14 RBKE
419	175.82	1285.25	Thalweg	41	5 139.6	1286.72	Water	646	652.74	1289.55	LBKF	50	380.17	1288.2 RBKF
423	188.5	1285.38	Thalweg	41	8 154.38	1286.73	Water	645	719.02	1289.37	LBKF	50	446.33	1287.5 RBKF
425	206.85	1285.5	Thalweg	42	2 159.83	1286.69	Water	644	759.5	1288.84	LBKF	49	505.08	1286.94 RBKF
427	231.23	1285.41	Thalweg	51	9 172.44	1286.69	Water	643	809.77	1288.06	LBKF	494	595.54	1286.87 RBKF
429	243.92	1285.01	Head of Pool	52	0 173.56	1286.58	Water	638	851.32	1288.11	LBKF	729	845.18	1288.15 RBKF
431	253.47	1284.58	Max Pool	42) 175.57	1286.67	Water	811	1037.09	1288.13	LBKF	62	845.18	1288.15 RBKF
433	269.24	1284.84	ground	42	4 188.82	1286.62	Water	812	1114.83	1288.07	LBKF	620	896.39	1287.51 RBKF
435	287.62	1285.28	Thalweg	42	5 207.63	1286.67	Water	813	1216.17	1286.64	LBKF	720	896.39	1287.51 RBKF
437	315.48	1285.45	Head of Riffle	42	8 231.34	1286.52	Water	814	1254.14	1285.83	LBKF	72	921.19	1287.69 RBKF
439	346.58	1285.53	Thalweg	43	J 243.65	1286.55	vvater	815	1341.46	1283.26	LBKF	619	921.19	1287.69 RBKF
44	3/2./3	1284.94	Thalweg	43.	2 203.21	1200.07	Water	810	1383.09	1203.4		720	943.87	1287.34 RBKF
4/4	110.07	1204.72	Thalweg	43	+ 209.00	1200.00	Water	940	1/32 25	1204.07		72	053.31	1207.34 KDKF
478	437 15	1284.02	Thalweg	43	3 207.30 8 315.78	1286.35	Water	936	1432.23	1282.88	LBKF	61	953.31	1286 68 RBKF
480	453.56	1284.11	Thalweg	50	7 342.96	1285.92	Water	937	1537.77	1282.61	LBKF	616	975.21	1287.36 RBKF
482	482.03	1283.56	Thalweg	44	345.9	1285.89	Water	938	1636.9	1282.93	LBKF	724	975.21	1287.36 RBKF
484	500.33	1283.13	Thalweg	50	5 348.96	1285.87	Water	939	1684.28	1283.38	LBKF	61	1026.08	1287.43 RBKF
488	512.27	1282.92	Head of Pool	44	2 372.87	1285.65	Water	944	1788.79	1282.57	LBKF	723	1026.08	1287.43 RBKF
486	523.14	1282.47	Max Pool	47	5 395.02	1285.46	Water	947	1919.15	1284.27	LBKF	810	1090.56	1288.35 RBKF
490	548.1	1282.85	ground	47	7 411.15	1285.31	Water	904	1979.69	1283.72	LBKF	809	1130.48	1287.81 RBKF
677	556.31	1283.1	Thalweg	47	9 437.46	1285.2	Water	903	2015.12	1284.76	LBKF	808	1180.98	1286.27 RBKF
569	556.31	1283.14	Thalweg	48	1 453.48	1285.06	Water	1073	2038.29	1283.52	LBKF	82	1214.58	1284.24 RBKF
492	563.8	1283.12	Thalweg	48	3 482.33	1284.87	Water	902	2056.85	1283.35	LBKF	820) 1267.17	1285.71 RBKF
652	597.56	1283.34	I naiweg	48	5 500.26	1284.86	vvater	1074	2069.06	1282.87	LBKF	80	1300.42	1284.18 RBKF
656	639.02	1282.80	Max Rool	49	9 502.21	1284.81	Water	1076	2098.07	1282.99		813	1359.05	1283.1 RBKF
657	661 1	1281.69	Thalweg	49	5 000.97 G 512.37	1204.7	Water	1077	2111.19	1202.07		81	1371 83	1204.20 RDRF
570	674.66	1281.00	Max Pool	48	7 523.15	1284.81	Water	1073	2125.17	1282.00	LBKF	80	1399.5	1283 71 RBKE
678	674.66	1281.29	Max Pool	49	1 547.96	1284.73	Water	1082	2139.14	1282.27	LBKF	804	1453.87	1283.62 RBKF
601	700.02	1281.72	Thalweg	49	3 563.82	1284.73	Water	1083	2155.06	1282.2	LBKF	803	1492.51	1283.88 RBKF
709	700.02	1281.72	Thalweg	65	1 564.97	1284.61	Water	1085	2171.26	1282.07	LBKF	803	1543.84	1283.42 RBKF
602	730.75	1283.19	Head of Glide	65	3 613.4	1284.61	Water	1086	2183.98	1281.49	LBKF	93	5 1579.62	1285.87 RBKF
710	730.75	1283.19	Head of Glide	65	5 630.12	1284.58	Water	1088	2251.44	1282.6	LBKF	934	1619.4	1285.74 RBKF
711	748.83	1283.02	Thalweg	65	8 666.8	1284.63	Water	1096	2322.2	1280.95	LBKF	933	1641.35	1285.08 RBKF
603	748.83	1283.02	Thalweg	68	8 693.6	1284.66	Water	1089	2326.31	1279.46	LBKF	933	2 1670.85	1284.46 RBKF
712	765.33	1281.56	Max Pool	58	0 693.6	1284.66	Water	1095	2333.8	1280.72	LBKF	93	1764.44	1284.11 RBKF
604	765.33	1281.56	Max Pool	69	8 696.75	1284.63	Water	1090	2343.24	1278.57	LBKF	930) 1831.86	5 1285.25 RBKF
/13	790 53	1201.43	Thalweg	59	J 090./5	1204.03	Water	1091	2407.50	1270.09		925	10000.89	1203.07 KBKF
005	/ 89.53 912 FC	1201.43	Head of Clide	62	0 /09.62 3 771.04	1204.00	Water	1092	2428.33	1280.02		920	002407	1203.// KBKF
/ 14 606	812.50	1282 74	Head of Glide	62	7 798.80	1284.63	Water	1094	2466.08	1281.62		92	2024.07	1203.00 KDKF
715	830.56	1283 68	Head of Riffle	62	. , 50.09 B 835.87	1284.58	Water	100	2474 85	1278 52	IRKE	100	2072 53	1282.78 RRKF
607	830.56	1283.68	Head of Riffle	62	9 871.67	1284.08	Water	1155	2509.23	1280.7	LBKF	106	2115	1282.25 RBKF
716	867.1	1283.29	Head of Run	63	0 886.83	1283.96	Water	1154	2519.73	1280.58	LBKF	106	2280.23	1280.91 RBKF
608	867.1	1283.29	Head of Run	63	1 904.91	1283.93	Water	1153	2523.29	1279.42	LBKF	105	3 2400.12	1280.74 RBKF
717	902.33	1281.34	Thalweg	63	2 919.37	1283.86	Water	1147	2535.5	1277.57	LBKF	105	2407.02	1279.98 RBKF
609	902.33	1281.34	Thalweg	63	4 978.35	1283.78	Water	1148	2550.9	1278.04	LBKF	1056	6 2411.15	1279.77 RBKF

Station	Elevation	Description	Station	Elevation	Description	Station	Elevation	Description	Station	Elevation	Description
162.0	1305 70	2003-Thalwea	169 (1305.0	2002-Thalweg	162 (1306.3	2001-Thalwea	162.0	1306.0	2000-Thalweg
170 0	1306.02	2003-Thalweg	215 (1305.5	2002-Thalweg	200.0	1305.3	2001-Thalweg	224.0	1305.3	2000-Thalweg
195.0	1306.02	2003-Thalweg	215.0	1305.3	2002-Thalweg	200.0	1305.0	2001-Thalweg	258.0	1304.2	2000-Thalweg
232.5	1304.78	2003-Thalweg	220.0	1304.6	2002-Thalweg	227.0	1304.3	2001-Thalweg	230.0	1307.2	2000-Thalweg
252.5	1304.70	2003 Thalweg	245.0	1304.0	2002-Thalweg	233.0	1304.3	2001-Thalweg	207.0	1302.4	2000-Thalweg
200.0	1304.43	2003-Thalweg	207.0	1204.2	2002-Thalwey	211.0	1302.0	2001-Thalwey	200.4	1204.0	2000-Thalweg
2/0.0	1303.39	2003-Thalweg	271.0	1302.3	2002-Thalwey	310.0	1305.0	2001-Thalweg	307.0	1302.2	2000-Thalweg
297.0	1302.67	2003-Thalweg	279.0	1302.9	2002-Thalweg	365.0	1304.9	2001-Thalweg	404.7	1304.0	2000-Thalweg
335.0	1304.67	2003-Thalweg	292.0	1302.5	2002-Thalweg	390.0	1302.3	2001-Thalweg	505.6	1303.7	2000-Thalweg
304.5	1304.91	2003-Thaiweg	295.0	1302.6	2002-Thaiweg	402.0	1303.2	2001-Thalweg	576.9	1301.6	2000-Thaiweg
370.7	1304.17	2003-Thaiweg	296.0	1302.3	2002-Thaiweg	455.7	1303.3	2001-Thalweg	602.3	1302.8	2000-Thaiweg
406.9	1303.68	2003-Thaiweg	305.0	1302.6	2002-Thalweg	488.9	1303.8	2001-Thalweg	665.7	1304.0	2000-Thaiweg
427.4	1303.93	2003-Thalweg	315.0	1303.3	2002-Thalweg	514.8	3 1302.6	2001-Thalweg	691.0	1303.3	2000-Thalweg
461.8	1303.78	2003-Thalweg	328.0	1302.7	2002-Thalweg	595.6	5 1303.1	2001-Thalweg	726.0	1303.8	2000-Thalweg
497.7	1303.88	2003-Thalweg	333.0	1303.4	2002-Thalweg	668.7	1304.3	2001-Thalweg	747.0	1302.0	2000-Thalweg
512.4	1303.23	2003-Thalweg	336.6	5 1304.6	2002-Thalweg	726.0	1303.8	2001-Thalweg	759.0	1301.6	2000-Thalweg
531.4	1302.25	2003-Thalweg	343.0	1303.7	2002-Thalweg	742.0	1300.7	2001-Thalweg	782.0	1303.0	2000-Thalweg
559.7	1301.82	2003-Thalweg	354.8	1303.5	2002-Thalweg	763.0) 1301.9	2001-Thalweg	882.0	1302.3	2000-Thalweg
603.8	1301.68	2003-Thalweg	362.1	1304.9	2002-Thalweg	782.0) 1303.2	2001-Thalweg	910.0	1300.5	2000-Thalweg
623.5	1303.33	2003-Thalweg	366.6	5 1304.2	2002-Thalweg	890.0) 1302.0	2001-Thalweg	942.0	1302.0	2000-Thalweg
655.0	1302.91	2003-Thalweg	372.1	1303.0	2002-Thalweg	896.0) 1301.2	2001-Thalweg	987.0	1300.7	2000-Thalweg
726.0	1303.55	2003-Thalweg	379.4	1302.4	2002-Thalweg	933.0) 1301.9	2001-Thalweg	1002.0	1299.3	2000-Thalweg
732.0	1303.28	2003-Thalweg	393.9	1303.3	2002-Thalweg	987.0) 1300.3	2001-Thalweg	1025.0	1300.6	2000-Thalweg
761.5	1302.54	2003-Thalweg	403.9	1303.8	2002-Thalweg	1015.0) 1301.2	2001-Thalweg	1059.0	1299.4	2000-Thalweg
769.0	1302.73	2003-Thalweg	456.6	5 1303.4	2002-Thalweg	1060.0	1300.5	2001-Thalweg	1073.0	1300.9	2000-Thalweg
812.0	1302.65	2003-Thalweg	494.8	1302.9	2002-Thalweg	1104.0) 1301.1	2001-Thalweg	1124.0	1300.1	2000-Thalweg
839.0	1302.59	2003-Thalweg	514.8	1302.1	2002-Thalweg	1136.0) 1301.3	2001-Thalweg	1187.0	1300.7	2000-Thalweg
886.0	1302.01	2003-Thalweg	546.6	5 1301.6	2002-Thalweg	1187.0) 1301.0	2001-Thalweg	1231.0	1300.6	2000-Thalweg
896.0	1301.38	2003-Thalweg	562.0	1300.9	2002-Thalweg	1203.0) 1301.1	2001-Thalweg	1243.0	1300.2	2000-Thalweg
908.0	1300.48	2003-Thalweg	572.9	1301.9	2002-Thalweg	1253.0	1300.4	2001-Thalweg	1289.0	1300.8	2000-Thalweg
930.0	1301.57	2003-Thalweg	609.3	1302.4	2002-Thalweg	1263.0) 1300.5	2001-Thalweg	1317.0	1299.8	2000-Thalweg
973.0	1301.08	2003-Thalweg	621.1	1303.6	2002-Thalweg	1317.0) 1299.7	2001-Thalweg	1330.0	1297.7	2000-Thalweg
984.0	1300.15	2003-Thalweg	652.0	1303.9	2002-Thalweg	1324.0) 1298.9	2001-Thalweg	1344.0	1298.9	2000-Thalweg
1010.0	1299.94	2003-Thalweg	726.0	1303.8	2002-Thalweg	1351.0) 1298.8	2001-Thalweg	1352.0	1299.1	2000-Thalweg
1039.0	1300.42	2003-Thalweg	729.0	1302.8	2002-Thalweg	1387.0) 1298.4	2001-Thalweg	1387.0	1298.4	2000-Thalweg
1058.0	1300.99	2003-Thalweg	738.0	1302.4	2002-Thalweg	1417.0) 1297.8	2001-Thalweg	1404.0	1296.9	2000-Thalweg
1094.0	1301.13	2003-Thalweg	767.0	1302.4	2002-Thalweg	1470.0	1296.6	2001-Thalweg	1417.0	1297.8	2000-Thalweg
1097.0	1300.1	2003-Thalweg	774.0	1303.0	2002-Thalweg	1511.0	1296.4	2001-Thalweg	1470.0	1296.8	2000-Thalweg
1115.0	1299.42	2003-Thalweg	851.0	1302.8	2002-Thalweg	1521.0) 1295.9	2001-Thalweg	1511.0	1294.5	2000-Thalweg
1135.0	1300.83	2003-Thalweg	872.0	1302.2	2002-Thalweg			0			0
1158.0	1299.77	2003-Thalweg	881.0	1302.0	2002-Thalweg						
1200.0	1300.71	2003-Thalweg	886.0	1301.1	2002-Thalweg						
1217.0	1300.39	2003-Thalweg	901.0	1300.7	2002-Thalweg						
1223.0	1300.05	2003-Thalweg	904.0	1300.2	2002-Thalweg						
1241.0	1298.96	2003-Thalweg	922.0	1300.5	2002-Thalweg						
1273.0	1299.67	2003-Thalweg	928.0	1301.7	2002-Thalweg						
1317.0	1300 23	2003-Thalweg	963 (1301 1	2002-Thalweg						
1324.0	1297.63	2003-Thalweg	976.0	1300.9	2002-Thalweg						
1329.0	1297.6	2003-Thalweg	982.0	1299.8	2002-Thalweg						
1357.0	1298.03	2003-Thalweg	993.0	1299.6	2002-Thalweg						
1364.0	1298.33	2003-Thalweg	1007 (1299.7	2002-Thalweg						
1387.2	1299.01	2003-Thalweg	1038 (1299.9	2002-Thalweg						
1392.0	1298.57	2003-Thalweg	1052 (1300 7	2002-Thalweg						
1401 0	1297.07	2003-Thalweg	1067 (1300.9	2002-Thalweg						
1417.0	1296.5	2003-Thalweg	1084 (1300.6	2002-Thalweg						
1425.0	1296 54	2003-Thalweg	1096 (1300 5	2002-Thalweg						
1420.0	1200.01	2000 maineg	1101 (1300.4	2002-Thalweg						
			1107.6	1300.0	2002-Thalweg						
			1107.0	1200.0	2002-Thalweg						
			1175.0	1299.0	2002-Thalweg						
			1120.0	1200.5	2002-Thalwey						
			1140.0	1200.1	2002-Thalwey						
			100.0	1200.5	2002-Thalwey						
			1213.0	1200.5	2002-Thalwey						
			1222.0	· 1300.7	2002-Indiweg						
			1230.0	1299.0 1200 7	2002- maiweg						
			1260.0	1299./ 1200.2	2002-Inalweg						
			12/2.0	1000.3	2002- maiweg						
			1317.0	1299.8	2002-I naiweg						
			1325.0	1297.9	2002-Inalweg						
			1333.0	1298.1	2002-Inalweg						
			1361.0	1298.3	2002-Inalweg						
			1384.0	v i∠98.8	2002-Inalweg						
			1387.0	1298.4	2002-Inalweg						
			1418.0	1297.2	2002-inalweg						
			1426.0	1297.0	2002-I halweg						
			1458.0	v i∠90.1	2002-Indiweg						
			1464.0	1290.0	2002-Inalweg						
			1508.0	1295.1	2002- i haiweg						

Station	Elevation	Description	Station	Elevation	Description	Station	Elevation	Description	Station	Elevation	Description
-466.1	1286.3	2003-Thalweg	-466.1	1287.4	2002-Thalweg	-466.1	l 1288.1	2001-Thalweg	-466.1	1288.9	2000-Thalweg
-461.1	1287.1	2003-Thalweg	-461.1	1286.6	2002-Thalweg	-461.1	l 1286.7	2001-Thalweg	-462.1	1287.6	2000-Thalweg
-383.1	1287.0	2003-Thalweg	-451.8	1285.6	2002-Thalweg	-451.1	1286.3	2001-Thalweg	-449.1	1287.4	2000-Thalweg
-363.1	1283.4	2003-Thalweg	-433.1	1287.6	2002-Thalweg	-437.1	1288.3	2001-Thalweg	-419.1	1289.5	2000-Thalweg
-333.1	1286.6	2003-Thalweg	-383.1	1286.4	2002-Thalweg	-388.1	1287.6	2001-Thalweg	-382.6	1287.1	2000-Thalweg
-295.1	1286.3	2003-Thalweg	-363.1	1283.7	2002-Thalweg	-382.6	5 1286.4	2001-Thalweg	-343.1	1288.2	2000-Thalweg
-146.1	1285.6	2003-Thalweg	-331.1	1286.6	2002-Thalweg	-378.6	6 1287.1	2001-Thalweg	-306.1	1287.2	2000-Thalweg
-79.1	1283.9	2003-Thalweg	-306.1	1286.5	2002-Thalweg	-362.1	1283.9	2001-Thalweg	-166.1	1285.4	2000-Thalweg
-1.1	1284.7	2003-Thalweg	-262.1	1285.8	2002-Thalweg	-344.1	1286.6	2001-Thalweg	-40.1	1285.0	2000-Thalweg
60.9	9 1283.0	2003-Thalweg	-198.4	1285.6	2002-Thalweg	-336.1	l 1287.4	2001-Thalweg	39.9	1285.0	2000-Thalweg
98.9	1286.4	2003-Thalweg	-166.1	1285.7	2002-Thalweg	-306.1	I 1286.5	2001-Thalweg	110.9	1286.6	i 2000-Thalweg
118.9	1284.7	2003-Thalweg	-118.1	1285.4	2002-Thalweg	-292.1	1285.3	2001-Thalweg	123.9	1284.5	2000-Thalweg
123.9	1283.8	2003-Thalweg	-45.2	1285.5	2002-Thalweg	-263.1	I 1286.0	2001-Thalweg	144.9	1286.3	2000-Thalweg
144.9	1284.9	2003-Thalweg	-28.1	1285.3	2002-Thalweg	-235.1	l 1286.2	2001-Thalweg	186.9	1285.3	2000-Thalweg
258.9	1284.9	2003-Thalweg	37.9	1284.1	2002-Thalweg	-173.1	1285.6	2001-Thalweg	224.9	1286.4	2000-Thalweg
508.9	1282.5	2003-Thalweg	61.2	1284.7	2002-Thalweg	-146.1	1285.6	2001-Thalweg	248.9	1286.8	2000-Thalweg
618.9	1282.6	2003-Thalweg	78.9	1284.1	2002-Thalweg	-116.1	I 1286.1	2001-Thalweg	422.9	1285.2	2000-Thalweg
647.9	1281.2	2003-Thalweg	86.9	1285.3	2002-Thalweg	-79.1	1286.0	2001-Thalweg	469.9	1284.8	2000-Thalweg
684.9	1280.8	2003-Thalweg	95.9	1286.0	2002-Thalweg	-42.1	l 1285.2	2001-Thalweg	663.9	1283.8	2000-Thalweg
718.9	9 1281.7	2003-Thalweg	107.9	1284.3	2002-Thalweg	11.9	9 1286.1	2001-Thalweg	767.9	1283.9	2000-Thalweg
735.9	1282.6	2003-Thalweg	133.9	1285.3	2002-Thalweg	41.9	9 1284.8	2001-Thalweg	848.9	1282.4	2000-Thalweg
752.9	9 1281.4	2003-Thalweg	151.5	5 1285.8	2002-Thalweg	82.9	9 1284.6	2001-Thalweg	860.4	1282.9	2000-Thalweg
776.9	1280.9	2003-Thalweg	217.6	1285.3	2002-Thalweg	102.9	9 1286.6	2001-Thalweg	875.9	1284.0	2000-Thalweg
808.9	1280.0	2003-Thalweg	307.9	1285.6	2002-Thalweg	113.9	9 1286.3	2001-Thalweg	907.9	1284.3	2000-Thalweg
828.9	1282.0	2003-Thalweg	339.1	1285.3	2002-Thalweg	119.9	1284.8	2001-Thalweg	995.9	1283.6	ל 2000-Thalweg
837.9	1283.6	2003-Thalweg	379.3	1284.9	2002-Thalweg	138.9	9 1285.7	2001-Thalweg	1136.9	1283.5	2000-Thalweg
868.9	1283.2	2003-Thalweg	484.9	1283.7	2002-Thalweg	148.9	1286.4	2001-Thalweg	1158.9	1282.5	ة 2000-Thalweg
882.9	1283.1	2003-Thalweg	534.9	1283.4	2002-Thalweg	166.9	1286.4	2001-Thalweg	1251.9	1281.4	2000-Thalweg
892.9	1282.3	2003-Thalweg	556.4	1283.1	2002-Thalweg	194.9	1285.9	2001-Thalweg	1345.9	1280.5	2000-Thalweg
905.9	1281.3	2003-Thalweg	608.9	1283.8	2002-Thalweg	257.9	9 1286.1	2001-Thalweg	1351.9	1279.2	2000-Thalweg
927.9	1280.6	2003-Thalweg	619.9	1283.4	2002-Thalweg	298.9	1286.3	2001-Thalweg	1353.9	1279.5	ی 2000-Thalweg
949.9	1280.6	2003-Thalweg	665.9	1281.0	2002-Thalweg	398.9	1285.3	2001-Thalweg	1367.9	1278.2	2000-Thalweg
1002.9	1282.6	2003-Thalweg	708.9	1282.0	2002-Thalweg	415.9	1285.3	2001-Thalweg	1391.9	1280.4	2000-Thalweg
1070.9	1282.1	2003-Thalweg	713.9	1282.3	2002-Thalweg	448.9	9 1284.9	2001-Thalweg	1413.9	1279.1	2000-Thalweg
1124.9	1282.8	2003-Thalweg	739.6	1283.0	2002-Thalweg	524.9	9 1284.1	2001-Thalweg	1433.9	1278.7	2000-Thalweg
1140.9	1278.6	2003-Thalweg	757.9	1282.5	2002-Thalweg	585.9	1284.1	2001-Thalweg	1450.9	1279.6	2000-Thalweg
1180.9	1280.0	2003-Thalweg	818.9	1282.6	2002-Thalweg	637.9	1284.4	2001-Thalweg	1504.9	1279.9	2000-Thalweg
1221.9	1279.7	2003-Thalweg	837.9	1283.5	2002-Thalweg	662.9	1282.6	2001-Thalweg	1578.9	1277.3	3 2000-Thalweg
1256.9	1280.0	2003-Thalweg	867.9	1282.4	2002-Thalweg	678.9	1283.0	2001-Thalweg	1633.9	1278.6	3 2000-Thalweg
1273.9	1279.6	2003-Thalweg	915.9	1283.5	2002-Thalweg	704.9	1283.7	2001-Thalweg	1856.9	1276.5	5 2000-Thalweg
1310.9	1279.6	2003-Thalweg	983.9	1282.9	2002-Thalweg	732.9	1283.6	2001-Thalweg	1901.9	1280.6	3 2000-Thalweg
1348.9	1279.0	2003-Thalweg	1124.9	1283.0	2002-Thalweg	752.9	1284.5	2001-Thalweg	2009.9	1279.2	2 2000-Thalweg
1362.9	1279.9	2003-Thalweg	1138.9	1279.4	2002-Thalweg	781.9	1284.0	2001-Thalweg	2080.9	1277.8	2000-Thalweg
1390 9	1279.2	2003-Thalweg	1163 9	1280.4	2002-Thalweg	823 9	1283 8	2001-Thalweg	2113.9	1277 6	3 2000-Thalweg
1408 9	1279.9	2003-Thalweg	1220 9	1281.3	2002-Thalweg	856.9	1284.3	2001-Thalweg	2217 9	1278.9	2000-Thalweg
1419 9	1278.4	2003-Thalweg	1259 9	1280.4	2002-Thalweg	862.9	1283 4	2001-Thalweg	2244 9	1277 2	2000-Thalweg
1450.9	1279.5	2003-Thalweg	1331.9	1280.0	2002-Thalweg	872.9	1284.5	2001-Thalweg	2252.9	1278.8	2000-Thalweg
1549.9	1278.3	2003-Thalweg	1340.9	1278.5	2002-Thalweg	891.9	1284.3	2001-Thalweg	2279.9	1278.5	5 2000-Thalweg
1567 9	1276.3	2003-Thalweg	1345 9	1279.8	2002-Thalweg	911 9	1284 6	2001-Thalweg	2410.9	1273 6	2000-Thalweg
1590 9	12767	2003-Thalweg	1371 9	1279.6	2002-Thalweg	960.9	1283 9	2001-Thalweg	2529.9	1278 1	2000-Thalweg
1595 9	1276 1	2003-Thalweg	1408 9	1280.0	2002-Thalweg	1040 9	1283.3	2001-Thalweg	2565 9	1275.5	5 2000-Thalweg
1602.9	1279.6	2003-Thalweg	1421 9	1278.4	2002-Thalweg	1115.9	1283 2	2001-Thalweg	2611.9	1275 7	2000-Thalweg
1623 0	1276.9	2003-Thalweg	1442 0	1279.5	2002-Thalweg	1137 0	1283 8	2001-Thalweg	2629 0	1274 7	2000-Thalweg
1653 0	1278.7	2003-Thalweg	1472.0	1270.0	2002-Thalweg	1153.0	1280.3	2001-Thalweg	2653 0	1275 5	2000-Thalweg
1679 0	12777	2003-Thalweg	1541 0	1278.0	2002-Thalweg	1167.0	1280 6	2001-Thalweg	2728 0	1273.3	2000-Thalweg
1741 0	12787	2003-Thalweg	1565 0	1276.3	2002-Thalweg	1200 0	1282 1	2001-Thalweg	2768 0	1270.0	2000-Thalweg
1781 0	1277 6	2003-Thalweg	1613 0	1280.0	2002-Thalweg	1266.0	1281 6	2001-Thalweg	2700.0	1271 0	2000-Thalweg
1825 0	1275.0	2003-Thalweg	1633.0	1200.0	2002 Thalweg	1200.0	1281 5	2001 Thalweg	2800 0	1271.0	2000-Thalweg
1856 0	1273.5	2003-Thalweg	1655.0	1270.0	2002-Thalweg	1353 (1201.0	2001-Thalweg	2000.0	1273.2	2000-Thalweg
1860.0	1276.4	2003 Thalweg	1607.4	1270.1	2002 Thalweg	1365.0	1201.0	2001-Thalweg	2000.0	1273.1	2000-Thalweg
1808.0	1270.4	2003-Thalweg	1717 0	1270.0	2002-Thalweg	1303.3	12/9.0	2001-Thalweg	2001.0	12/1.0	2000-Thalweg
1050.0	1278.0	2003 Thalweg	1758.0	1270.2	2002 Thalweg	1388 0	1200.	2001-Thalweg	2000.0	1200.0	2000-Thalweg
1950.8	1270.4	2003 Thalweg	18/3 0	1270.9	2002-Thalweg	1300.3	12/9.0	2001-Thalweg	3011.0	1200.0	2000-Thalweg
2015 0	1270.2	2003 Thalweg	1886.0	1270.0	2002-Thalweg	1/16 0	1200.0	2001-Thalweg	3001.0	1203.7	2000-Thalweg
2013.5	1270.2	2003-Thalweg	1000.2	1270.5	2002-Thalweg	1410.3	1200.	2001-Thalweg	2102 0	1271.0	2000-Thalweg
2004.8	1270.9	2003-Thalweg	1010.8	1279.0	2002-Thalweg	1459.5	1201.1	2001-Thalwey	3103.8	1270.4	2000-Thalwey
2131.5	1275.0	2003-Thalweg	2002 0	1279.4	2002-Thalweg	1451.5	1279.2	2001-Thalweg	2201.0	1271.0	2000-Thalweg
2172.8	1270.7	2003-Thalwey	2003.8	1270.9	2002-Thalwey	1400.5	1200.0	2001-Thalwey	3201.8	12/0.3	2000-Thalwey
2210.8	, 12//./) 1075.0	2003 Tholwer	2000.8	, 1∠/0.5 1070.0	2002-Indiweg	1002.8	/ 1200.4) 1000.4	2001-maiweg	3240.8	10600	2000-Thalweg
2234.9	12/5.3	2003-I naiweg	2100.9	12/9.0	2002-I naiweg	1530.9	1280.4	2001-1 naiweg	3296.5	1208.3	2000-Inalweg
2250.5	v 12/0.4	2003-Thalweg	2111.9	v 1270.5 10764	2002-Indiweg	1501.9	2 12/9.2 10760	2001-Inalweg	3321.5	1200./ 1267 5	2000-Thalweg
2322.8	, 1270.9) 1075 4	2003 Thelwor	2102.5	, 1270.4 1977 7	2002- maiwey	1091.5	, 1270.8) 1077 /	2001-maiweg	3330.5	1207.0	2000- maiwey
2009.5	v 1∠/0.4	2003 Tholwer	21//.5	, 12//./ 1070 0	2002-Indiweg	1005.5	/ 1∠//.4	2001-maiweg	20000	1200.0	2000-maiweg
2489.9	1272.0	2003-I naiweg	2233.9	12/0.2	2002-I naiweg	1031.9	7 12/9.4	2001-Inalweg	3441.9	1207.5	2000-Inalweg
2541.9	12/0.5	2003-I naiweg	2251.9	12/0.1	2002-I naiweg	1048.9	12//.t	2001-Thalweg	3486.5	1200.9	2000-Inalweg
2046.5	0 12/2./	2003- maiweg	22/1.5	0.0121 v ג דדרף נ	2002-Thalweg	1008.5	y 1∠/0.5) 1070.0	2001-Thalweg	3014.5	1200.3	2000-maiweg
20/0.5	7 12/0.3 1074.0	2003- Halweg	2299.9	, 12//.4	2002-Thalweg	100/.5	y 12/9.0	2001-Thalweg	3526.8	1200.2	2000-Thalweg
2031.5	7 1∠/1.8	2003-Thalweg	2344.9	, 12//.U	2002-Indiweg	1/01.9	7 12/9.U	2001-Inalweg	3552.5	1200.9	2000-maiweg
2/1/.9	¢ ו∠/גול	∠uus-i naiweg	2363.5	, i∠/ɔ.5	∠uuz-i naiweg	1/3/.8	a 1279.1	∠uu i-i naiweg			

EAST PRONG ROARING RIVER RECEIVED STREAM RESTORATION, JUN 6 2005 Wilkes County, North Carolina

ANNUAL MONITORING REPORT ADDENDUM

Prepared by: North Carolina State University, Water Quality Group, NC Stream Restoration Institute

NC STATE UNIVERSITY

For: Ecosystem Enhancement Program

MARCH 30,2004

2003 Addendum to the Stone Mountain River Restoration Monitoring Report

1 Purpose

Morphological field investigation and data analysis was conducted on September 24, 2003 and January 7, 2004 in order to monitor the post construction morphology on the East Prong Roaring River stream restoration site. A three-person team from NCSU performed the field reconnaissance. A geomorphic survey was completed. The monitoring results include assessment of stream bank stability as well as stream morphology. Field reconnaissance involved the re-surveying of permanent cross-sections at riffles and pools, longitudinal profiles, and modified Wolman pebble counts. Vegetation monitoring was performed in July of 2003 by a two-person team. Vegetation plots were sampled for monitoring for the Year 2003. Also included in this report addendum is a summary of the maintenance to date for this project and any potential future concerns.

2 Summary

2.1 Morphology

Cross Sections

Field data was collected in 2003 and 2004 on the permanent cross sections throughout Reaches 2 and 4. Overlaying these sections on previous survey data, as shown in Appendices A and B, shows any changes that have taken place in the channel with regards changes in the width/depth ratio, cross-sectional area, and entrenchment ratio. This is useful information over time to determine the stability of the channel. Most of the cross sections surveyed show little to no change from 2000 to 2003. The changes that did occur include deepening of pools (increased habitat), and a slight narrowing of the channel in some areas. These results indicate overall stability within the channel.

Longitudinal Profile

Longitudinal profiles were surveyed in 2003 and 2004. They were each plotted together with previous surveys to show any changes in the bed form over the previous year. Inverts of cross vanes and permanent cross sections were used as control points so that the annual surveys would be accurately compared. The results of the profiles revealed some deepening of the pools, little to no change in riffles, and proper functioning of the grade control structures. The average slope of the channel has also remained stable.

Pebble Counts

The pebble count data collected in 2003 was revealing as to the degree of the coarsening of the channel substrate. There have been at least three bankfull events since construction in 2000 and the bed material has coarsened up significantly. The changes in bed material indicate improved habitat and removal of fine material that was present immediately after construction.
2.2 Photo Points

The photo points taken along the channel and constructed wetlands and ponds in Reaches 2 and 4 show the vegetation that has come up and survived (including transplants). Also, the channel appears stable with no development of unstable depositional features or erosion of the banks in these areas.

2.3 Vegetation

No additional plants were installed in 2003. There was a marked reduction in surviving bare root plants in Reach 2 and the upper portion of Reach 4 (Appendix C). Deer browse continues to be a problem at this site. Many bare root plants and few live stakes have survived deer browse, but have been limited in vertical growth as a result. As in last years survey results, black walnut and sycamore seem to be the least browsed species.

Natural regeneration was surveyed with the regular plots again this growing season. The numbers were not as abundant as in 2003, but still relatively high. Seedlings range from 1 to 3 years old are abundant throughout the project area. The majority species is sycamore, tulip poplar, river birch, Virginia pine, sweet gum, black cherry, tag alder, and spice bush. Deer browse does not seem to be a problem with these plants.

Bare root survival was above 80% in all plots, however, stem count was low in plots 3 and 4. This number should also not be misinterpreted; it is relative only to this season. Live bare roots were more numerous in 2003. Extrapolated averages across 4 bare root plots gave an overall project average of **330 trees per acre** that are surviving. Live plants included sycamore, sugarberry, black cherry, river birch, black gum, green ash, black walnut, willow oak, tag alder, spice bush, witch hazel, and silky dogwood. Only taller black walnut and sycamore bare roots planted this season were less affected by deer browse. Other survivors were browsed lower to the ground.

Live stake survival was again extremely low. This may be attributed to droughty conditions during growing season and in some cases, washout from flooding. Deer browse was also a contributing factor. It was noted that foot traffic up and down the staked banks was often heavy in select places and that many stakes were dislodged or removed completely.

Herbaceous cover was determined in bare root plots and was greater than 90% in all plots. Switchgrass, rushes, and sedges were exceptionally robust. No more seeding is required.

2.3 Project Maintenance

Since November 2000, when the project was completed, there have been two scheduled maintenance events. The first one was in May of 2001, when a failed log cross vane was removed. Also at this time, some grading/stabilization was performed on an eroding stream bank and bioengineering techniques, such as brush mattresses and fascines, were installed. The second was in November 2002, when a two more log cross vanes

was repaired (logs removed and replaced with boulders). One of these structures was in Reach 2 and the other in Reach 4. The two maintenance sites have fairly good access allowing for minimal disturbance of the existing vegetation. NCSU personnel make frequent site visits to the project when in the area, and are constantly monitoring the visual status of the structures and stream banks. The repaired cross vane in Reach 4 continues to be of concern as it is the sole grade control for a very steep riffle. Over the past year there have been several large flow events, with more than one overtopping the banks of the river. This has led to erosion in several meander bends where woody vegetation was not established. NCSU recommends some repair work be considered for the severely eroding areas in 2004. Also, a replanting is scheduled for the Fall/Winter of 2004-2005 of woody vegetation at least two years old. Ideally the bank repair work will be completed immediately before the replanting.

ATTACHMENT A Plan View Maps for Reaches 2 & 4

APPENDIX A

REACH 2: STREAM GEOMETRY AND SUBSTRATE DATA YR 2003 SURVEY

Cross Section R2-XSEC1 RIFFLE

STONE MTN RESTORATION - REACH 2 Yadkin River Basin, Wilkes County, North Caroli Dani Wise

Sep-03

	Survey	Data			
NOTES	STA	HI	FS	ELEV	REV STA
	0	100	5.65	94.35	53.8
	15	100	5.38	94.62	68.8
	27	100	4.82	95.18	80.8
	36	100	5.55	94.45	89.8
	39	100	7.33	92.67	92.8
	41	100	8.82	91.18	94.8
	42	100	9.94	90.06	95.8
	42.5	100	10.92	89.08	96.3
	44.2	100	11.28	88.72	98
	48.5	100	11.3	88.7	102.3
	54	100	11.02	88.98	107.8
	61	100	10.85	89.15	114.8
	67	100	10.92	89.08	120.8
	72.5	100	10.95	89.05	126.3
	78	100	11.02	88.98	131.8
	84.3	100	10.92	89.08	138.1
	88.5	100	11.08	88.92	142.3
	93	100	10.43	89.57	146.8
	95	100	9.24	90.76	148.8
	95.6	100	8.6	91.4	149.4
	96.3	100	6.93	93.07	150.1
	97	100	5.73	94.27	150.8
	98	100	5.3	94.7	151.8
	99	100	4.82	95.18	152.8
	101	100	4.62	95.38	154.8
	105	100	4.6	95.4	158.8
	109.1	100	4.64	95.36	162.9
	109.1	100	4.75	95.25	162.9

1					
	ER	7.3	7.4	7.4	
	Dmax	6.0	5.7	5.6	
	Abkf	257.9	241.4	239.1	
	M/D	14.6	15.2	15.6	
	Dbkf	4.2	4.0	3.9	
	Wbkf	61.4	60.5	61.0	
	ELEVbkf	93.98	94.01	94.27	
	RBKF	151.4	150.8	150.8	
	LBKF	90.06	90.3	89.8	
	Wfpa	450	450	450	
	Type	5	64	5	
	Feature	RIFFLE	RIFFLE	RIFFLE	A PERSONAL PROPERTY IN
	R2-XSEC1	YR1	YR2	YR 3	

Cross Section R2-XSEC2 POOL

STONE MTN RESTORATION - REACH 2 Yadkin River Basin, Wilkes County, North Caroli Dani Wise

Sep-03

	Survey	Data			
NOTES	STA	HI	FS	ELEV	
LPIN	0	100	2.32	97.68	96.85
GRND	0	100	2.54	97.46	96.63
	18	100	2.48	97.52	96.69
	23	100	3.57	96.43	95.60
	27	100	4.74	95.26	94.43
	32	100	5.5	94.5	93.67
	36.5	100	5.62	94.38	93.55
	40.3	100	6.08	93.92	93.09
LEW	43.6	100	6.74	93.26	92.43
	45.4	100	7.2	92.8	91.97
	49.2	100	7.64	92.36	91.53
	53	100	8.34	91.66	90.83
	56.3	100	8.92	91.08	90.25
	60.2	100	9.5	90.5	89.67
	62.2	100	9.48	90.52	89.69
	65	100	9.11	90.89	90.06
	68.5	100	8.36	91.64	90.81
	70.8	100	8.18	91.82	90.99
REW	72.2	100	7.52	92.48	91.65
	72.5	100	6.74	93.26	92.43
	73.4	100	5.66	94.34	93.51
	75	100	4.84	95.16	94.33
	76.4	100	4.26	95.74	94.91
	78	100	3.87	96,13	95.30
	84.5	100	3.9	96.1	95.27
RPIN	87.1	100	3.69	96.31	95.48

Cross Section R2-XSEC3 POOL

STONE MTN RESTORATION - REACH Yadkin River Basin, Wilkes County, No Dani Wise

urvey [Data	-	
ТА	FS	ELEV	REVISE STA
0	3.86	1308.14	105.7
5	4.77	1307.23	110.7
8	6.16	1305.84	113.7
9.1	6.63	1305.37	114.8
9.7	8.04	1303.96	115.4
11.5	8.62	1303.38	117.2
16.0	8.57	1303.43	121.7
19.6	8.64	1303.36	125.3
21.8	8.52	1303.48	127.5
26.5	8.75	1303.25	132.2
32.0	8.91	1303.09	137.7
36.3	8.91	1303.09	142
40.4	8.95	1303.05	146.1
42.6	8.56	1303.44	148.3
43.6	7.97	1304.03	149.3
45.1	6.54	1305.46	150.8
47	5.84	1306.16	152.7
49	5.48	1306.52	154.7
54.3	5.18	1306.82	160
54.3	5.21	1306.79	160

Cross Section R2-XSEC4 RIFFLE

STONE MTN RESTORATION - REACH 2 Yadkin River Basin, Wilkes County, North Caroli Dani Wise

vey Data			
STA	FS	REV.STA	ELEV
0	6.72	17.7	1303.68
7	7.63	24.7	1302.77
11	7.95	28.7	1302.45
15	9.13	32.7	1301.27
16.5	9.39	34.2	1301.01
20	9.93	37.7	1300.47
30.5	10.96	48.2	1299.44
36.6	10.93	54.3	1299.47
39	10.45	56.7	1299.95
45	10.2	62.7	1300.2
49.7	10.04	67.4	1300.36
52.2	9.49	69.9	1300.91
54.4	8.54	72.1	1301.86
56.5	7.09	74.2	1303.31
58.2	6.55	75.9	1303.85
60	6.11	77.7	1304.29
64.3	5.31	82	1305.09
64.3	5.28	82	1305.12

ongitudinal Profile - 200.	3 Survey		STONE M Yadkin R Dani Joh	MTN RE liver Basi nson	STORATI in, Wilkes	ION - REACI s County, No	H 2 rth Carol	ina			STA (ft)	ELEV (
					Chan Slo Valley Sl Sinuosity	ope (ft/ft) ope (ft/ft) /, K	0.0073 0.0097 1.33		Head First I Head Last I Valley Leng Channel Le Elev Chang	Riffle Riffle th (ft) ngth (ft) e (ft)	0 1263 950 1263 9.25	1308. 1299.
1003 Survey Data						HI for graph	1320					
TP NOTE	revise STA	STA	HI	FS TW	FS WS	WATER	ELEV TW	ELEV WS	revise TW ELEV	revise HI		
	0	0	100	11.18	10.29	0.89	88.82	89.71	1308.82	1320	I	
	17	17	100	10.95	10.34	0.61	89.05	89.66	1309.05	1320	i	
	33	33	100	10.86	10.44	0.42	89.14	89.56	1309.14	1320	1	
run Head of pool	70.5 96.5	70.5 96.5	100	12.19	11.14	1.05	87.81	88.85	1307.81	1320	ł	
mead of poor	116	116	100	12.54	11.24	2.34	86.42	88.76	1306.42	1320	1	
	135	135	100	14.3	11.28	3.02	85.7	88.72	1305.7	1320	I	
	173	163	100	12.3	11.28	1.02	87.7	88.72	1307.7	1320	I	
1 bs=5.44,xvane 1	202.5	192.5	94.26	6.32	5.69	0.63	87.94	88.57	1307.94	1314.3		
	208.7	198.7	94.26	7.06	6.25	0.81 1 3	86.71	88.01	1307.2	1314.3		
	271.8	261.8	94.26	7.3	6.35	0.95	86,96	87.91	1306.96	1314.3		
	310	300	94.26	7.45	6.62	0.83	86.81	87.64	1306.81	1314.3		
	350	340	94.26	7.35	6.66	0.69	86.91	87.6	1306.91	1314.3		
	366.4	356.4	94.26	8	6.66	1.34	86.26	87.6	1306.26	1314.3		
	387.5	377.5	94.26	8.98	6.71	2.27	85.28	87.55	1305.28	1314.3		
	419	409	94.20	9.41	6./1 6.73	2.7	04.00 84.71	87.53	1304.80	1314.3		
	400 490	480	94.20	7.9	6.75	1.15	86.36	87.51	1306.36	1314.3		
	525	515	94.26	8.32	6.87	1.45	85.94	87.39	1305.94	1314.3		
	596	561	94.26	7.68	6.95	0.73	86.58	87.31	1306.58	1314.3		
	602	567	94.26	7.95	7.31	0.64	86.31	86.95	1306.31	1314.3		
91-740	631.5	596.5	94.26	8.69	7.41	1.28	85.57	86.85	1305.57	1314.3		
∠ bs=7.40	682	604 647	95.30	9.6	8.58 8.68	1.02	85.68	00.70 86.68	1305.76	1315.4		
	709	674	95.36	9.74	8.75	0.99	85.62	86.61	1305.62	1315.4		
3 bs=4.94, jhook	756	721	92.05	7.01	5.93	1.08	85.04	86.12	1305.04	1312.1		
	766	731	92.05	7.64	6.34	1.3	84.41	85.71	1304.41	1312.1		
	778	743	92.05	8.54	6.41	2.13	83.51	85.64	1303.51	1312.1		
Ta a a la	800	765	92.05	7.45	6.45	1 1 2 6	84.6	85.6 85.47	1304.6	1312.1		
jnook	854 854	808	92.05	7.94 8.87	6.38	2.03	83.18	85 21	1304.11	1312.1		
	880	845	92.05	9.08	6.78	2.3	82.97	85.27	1302.97	1312.1		
	909	874	92.05	8.6	6.76	1.84	83.45	85.29	1303.45	1312.1		
	928	893	92.05	8.03	6.75	1.28	84.02	85.3	1304.02	1312.1		
rock vane	964	929	92.05	7.89	6.8	1.09	84.16	85.25	1304.16	1312.1		
scour	967 985	932	92.05	8.92	1.22	1.7	82 45	04.03 84.85	1303.13	1312.1		
	1005	970	92.05	8.19	9.25	-1.06	83.86	82.8	1303.86	1312.1		
	1028	993	92.05	9.25	7.22	2.03	82.8	84.83	1302.8	1312.1		
4 bs=6.44	1070	1035	93,95	10.21	9.12	1.09	83.74	84.83	1303.74	1314		
	1087	1052	93.95	10.53	9.41	1.12	83.42	84.54	1303.42	1314	•	
log våne	1173	1078	93.95	10.87	9.73	1.14 2.15	03.08 81.00	04.22 84 14	1303.08	1314	•	
μονι	1163	1128	93.95	11.30	9.75	2.15 1.5	82.7	84.2	1302.7	1314		
xvane3	1207	1160	93.95	10.69	9.8	0.89	83.26	84.15	1303.26	1314		
	1214	1167	93.95	13.29	10.9	2.39	80.66	83.05	1300.66	1314		
	1219	1172	93.95	13.32	10.9	2.42	80.63	83.05	1300.63	1314		
	1247	1200	93.95	12.89	10.95	1.94	81.06	83	1301.06	1314	•	
vyona4	1254	1207	93.95	12.59	10.95	1.04	01.30 87 04	03 82 97	1307.30	1314	• L	
луаціст	1277.2	1225.2	93.95	12.35	11.36	0.95	81.6	82.49	1301.6	1314		
	1202	1239	93.95	13.85	12.23	1.62	80.1	81.72	1300.1	1314	•	
	1307	1255	93.95	14.42	12.44	1.98	79.53	81.51	1299.53	1314	ļ	
	1315	1263	93.95	14.38	12.72	1.66	79.57	81.23	1299.57	1314	Ļ	

Longitudinal Profile

ELEV (ft)	74.91																			
STA (ff)	Head Lirst Rume U Head Last Riffle 4089 Valley Length (ft) annel Length (ft) 4089 Elev Change (ft) 0		ED REVISED TW ELEV	91.34 92.1 91.55 91.55 88 93	8.0.0 88.04 89.138 89.72	88.82 89.94 89.94 87.54 87.54 86.16	85.76 86.69 88.37 88.37 88.37	88.438 88.62 88.62 88.62 8.62 8.62 8.62 8.62	88.12 87.25 86.27 85.62 85.62 85.62 85.62	87.9 87.8 84.55 84.95 84.95	84.71 85.04 84.58 84.58 84.61 84.61 84.94 84.94	84.16 84.91 83.41 83.33 83.33 83.33 83.33 83.33 83.33 83.33 83.33 83.33 83.33 83.29 83.29 83.29 83.29 83.20 83.20 83.41 83.20 83.41 83.41 83.41 83.41 83.41 83.41 83.41 83.41 83.41 83.41 84.51 84.51 84.51 84.51 84.51 85.410	81.07 81.11 81.11 83.65 83.65 83.71 83.71	82.62 80.91 81.44 83.35 83.35	83.18 83.21 83.385 83.55 83.55 83.55 80.27 80.27	81.39 81.33 80.39 80.39 81.5 1.5 1.5	7.7.73 80.34 8.6.8 1 7.5.1 7.5.1	74.79 74.79 74.51 74.65 74.65	7, 55 7, 59 7, 4, 81 7, 3, 15 7, 55 7, 55 7, 58 7, 58	71.34 73.4 71.53
Carolina	ġ		STA	320 11 13 83 5 0 320 17 133 10 83 5 0	527 565 565 585	590 611 725 975 114 114	1151 1218 1218 1218	1275 1304 1335	1345 1356 1372 1372 1394	1537 1591 1591 1607 1647	1777 1777 1829	1857 1875 1875 1917 2016 2016	2062 2062 2062 2063 2063 2063 2063 2063	2248 2323 23365 23365 2417	255122 25512 25512 25512 25512 25512 2632 26377 2632	2723 2956 3006	3042 3042 3086 3267	3455	36010 3751 3751 3751 36010 3751 3751 36010	3952
North C			ELEV	94.88 93.7 95.63 93.17 93.17 92.97	93.01 92.91 92.59	92.59 92.53 92.53 90.65 90.65	90.55 90.55	90.48 90.48	90.36 89.92 89.94 89.95	89.78 89.78 89.78 87.11 87.1	87.04 87.81 87.7 87.62 87.62 87.63 87.6	87.5 87.5 86.76 86.78 86.49 86.49 86.4	86.33 86.33 86.33 86.33 86.25 86.21 86.21	86.05 85.98 86.02 86.02 85.02	94.63 85.48 85.36 85.35 85.35 85.33 85.33 85.33 85.33 85.33 85.33 85.33 85.33 85.33 85.33 85.33 85.33 85.33 85.33 85.33 85.35	83.94 94.63 82.93 82.6 95.23	80.63 80.63 80.31 79.52 79.52	78.26 78.26 78.28 78.28	75.91 75.91 75.91 75.91 75.91	75.62 75.62 75.63
ON County	0.005	ŝ		93.84 94.6 94.5 90.94 92.75 92.1	91.19 92.88 92.88 91.22	90.32 91.44 91.4 89.04 89.11	87.26 88.19 89.1 87.87 87.87	86.48 86.48 88.46 90.12 89.67	89.62 88.75 87.77 87.12 87.12	88.6 88.6 89.33 85.05 86.45 86.45	86.21 86.54 86.08 86.11 85.5 86.44	85.66 86.41 84.91 84.91 86 84.83 82.79	83.17 82.61 86.13 85.15 84.17 84.17 85.21	84.12 82.41 83.98 83.94 84.49 84.49 84.85	84.68 84.71 85.35 85.35 82.08 83.18 83.18 84.21 84.21	82.89 83.43 81.89 79.1 83	79.23 81.84 78.3 80.07 79.01 77.21	76.91 76.01 76.01 76.15	76.81 77.41 76.31 76.31 75.29 74.65 73.5	72.84 74.9 73.03
TORATI , Wilkes	pe (ft/ft) pe (ft/ft) losity, K		RTOB						0 .50					ы 8						
ITN RES ver Basir è	Chan Slo alley Slo Sinu		FS WS	8.25 9.43 9.56 9.96 10.16	10.12 9.38 9.7	9.7 9.76 9.8 11.64 10.13	10.18 10.18 10.25	10.25 7.6	7.65 8.09 8.11 8.15 8.15	8.23 8.31 10.9 8.84	7.9 8.13 8.32 8.34 8.34 8.34	8.45 8.45 9.16 9.54 9.54 8.45	8.19 8.24 8.32 8.33 8.33 8.38	8.55 8.55 8.55 8.55 8.55 8.72	9.15 5.27 9.3 9.3 9.39	10.69 11.7 12.63	14.6 14.92 15.17 10.1	9.15 9.15 9.15	9.18 9.38 9.81 6.75 6.75	7.03 7.03 7.75
STONE N Yadkin Ri Dani Wise	~ >		FS T	9.29 8.53 8.63 12.19 10.04 11.03 11.03	11.94 12.75 9.41 11.07	11.97 10.85 13.25 11.62	13.47 11.63 11.63 12.86	13.30 14.25 7.89 8.34	8.39 9.26 10.29 10.89	8.91 9.41 9.49 9.49 7.39 7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30	9.73 9.88 9.54 9.54 10 10 10 10 10 10 10 10 10 10 10 10 10	10.28 9.53 9.94 11.11 13.15	72.7 8.44 11.96 9.42 9.36 9.36	10.45 12.16 10.59 11.63 10.08 9.72	9.95 9.92 9.28 12.55 10.42 86	11.74 12.72 16.13 12.23	16 13.39 15.16 10.61	1212122	9.95 9.16 9.16 9.16	9.63 9.63 9.63
			I	100 100 100 100 100 100 100 100 100 100	102.9 102.9 102.9	102.9 102.9 102.9 100.73	100.73 100.73 100.73 100.73 100.73	98.01 98.01	88.88 89.00 10.000	888888888 252228	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 8 8 8 8 8 8 8 8 8 8 8 8 9 8 8 8 8 8 9 8 8 8 8	99 99 99 99 99 99 94 57 75 75 75 99	94.57 94.57 94.57 94.57 94.57 94.57	9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8	8 8 8 8 8 8 7 8 8 8 7 8	8 8 73 3 8 73 8 8 73 8 8 8 73 8 8 8 73 8 8 8 73 8 8 8 73 8 8 8 73	87.36 87.36 87.36 87.36	87.36 87.36 87.36 87.36 82.66 82.66 82.66	82.66 82.68 82.68 82.68
			STA	0 9 2 2 2 2 2 2 0 0 0 2 2 2 2 2 2 2 2 2	88 27 82 88 24 82	605 626 390 1100 1120	1166 1200 1217 1234 1266	1280 1310 1322 1353	1367 1377 1412 1434	1487 1555 1622 1678 1678	1719 1771 1808 1846 1860	1888 1919 1961 2060 2078	2101 2106 2113 2134 2190 2252	2292 2367 2367 2380 2409 2409 2461	2466 2526 2595 2642 2643 2643 2721	2767 2833 2900 3000 3024	3031 3058 3114 3200 3273 3273	3386 3459 3512 3512	368 3611 3866 3866 3866 3866 3866	385(4002 4067 4089
Profile				XVANE 1	bs=4.16 XVANE 2			XVANE 3		XVANE 4		XVANE 5				XVANE 7	XSEC 6 XVANE 8		XVANE 9	XVANE 10
ngitudinal			TP		-	N		n		4			a		۵	2	Ø	o	6	

APPENDIX B

REACH 4: STREAM GEOMETRY AND SUBSTRATE DATA YR 2003 SURVEY

Cross Section R4-XSEC1 RIFFLE

YEAR 3 (2	2003)		HI =	100	
	Survey I	Data	1	Adjusted a	Stations/Elev
NOTES	STA	FS	ELEV	STA	ELEV
	0	5.09	97.78	27	96.7
	3	5.21	97.2	30	96.12
	6	6.12	96.17	33	95.09
	9	7.31	94.98	36	93.9
	10.5	8.5	93.79	37.5	92.71
	11.3	10.87	91.42	38.3	90.34
	12	11.62	90.67	39	89.59
	13	11.6	90.69	40	89.61
	17	11.41	90.88	44	89.8
	28	11.24	91.05	55	89.97
	36	10.97	91.32	63	90.24
	45	10.71	91.58	72	90.5
	47	9.42	92.87	74	91.79
	53	8.02	94.27	80	93.19
	58	6.42	95.87	85	94.79
grad	65.3	6.81	95.48	92.3	94.4

Cross Section R4-XSEC2 POOL

YEAR 3 (2	2003)		HI =	100		
	Survey l	Data	l	Adjusted	Stations/Elev	,
NOTES	STA	FS	ELEV	STA	ELEV	
LTopPin	0	5.25	95.48	19	95.48	*****
grad	0	5.29	95.44	19	95.44	
LTOB	2	5.6	95.13	21	95.13	
	3.5	6.47	94.26	22.5	94.26	
LEW	11	10.23	90.5	30	90.5	
	13	10.89	89.84	32	89.84	
	16	11.04	89.69	35	89.69	
	21	11.35	89.38	40	89.38	
	25	11.95	88.78	44	88.78	
	31	13.05	87.68	50	87.68	
	33	12.81	87.92	52	87.92	
	35	12.56	88.17	54	88.17	
REW	37.9	10.14	90.59	56.9	90.59	
	40	8.25	92.48	59	92.48	
	41.5	6.18	94.55	60.5	94.55	
RBKFL	43	5.25	95.48	62	95.48	
	45.5	3.44	97.29	64.5	97.29	
RTOB	49	0.48	100.25	68	100.25	

7

.

Cross Section R4-XSEC3 POOL

YEAR 3 (2	.003)		HI =	94.57		
	Survey I	Data		Adjusted	Stations/Elev	
NOTES	STA	FS	ELEV	STA	ELEV	
	0					
	4	6.39	88.18	5.5	86.32	
	8.5	6.73	87.84	10	85.98	
	10	6.08	88.49	11.5	86.63	
	18	5.65	88.92	19.5	87.06	
top bar	23	5.35	89.22	24.5	87.36	
	30	5.83	88.74	31.5	86.88	
	35	6.9	87.67	36.5	85.81	
	39	7.66	86.91	40.5	85.05	
lew	42	8.24	86.33	43.5	84.47	
	45	9.36	85.21	46.5	83.35	
	48	9.82	84.75	49.5	82.89	
	50	10.25	84.32	51.5	82.46	
	52	10.72	83.85	53.5	81.99	
	54	10.86	83.71	55.5	81.85	
	56	10.94	83.63	57.5	81.77	
	57	10.94	83.63	58.5	81.77	
	61	10.41	84.16	62.5	82.3	
	65	8.72	85.85	66.5	83.99	
	68	8.82	85.75	69.5	83.89	
	71	8.86	85.71	72.5	83.85	
rew	73	8.16	86.41	74.5	84.55	
	75.5	7.17	87.4	77	85.54	
	78.3	5.83	88.74	79.8	86.88	
	87.2	2.45	92.12	88.7	90.26	
	93	2.45	92.12	94.5	90.26	
	102	1.82	92.75	103.5	90.89	
rtop	112.5	0.8	93.77	114	91.91	
rarnd	112.5	0.86	93.71	114	91.85	

, ,

Cross Section R4-XSEC4 RIFFLE

NOTES Itop	Survey I STA 0 3 8	Data FS 3.78 5.09	A ELEV 90.85 89.54	ADJUSTEIA STA 0 3	DJUSTED ELEV 90.45 89 14	
NOTES Itop	<u>STA</u> 0 3 8	FS 3.78 5.09	ELEV 90.85 89.54	<u>STA</u> 0 3	ELEV 90.45 89.14	
ltop	0 3 8	3.78 5.09	90.85 89.54	0 3	90.45 89.14	
	3 8	5.09	89.54	3	89 14	
	8				00.11	
		5.36	89.27	8	88.87	
	12	5.65	88.98	12	88.58	
lfw	20.4	8.88	85.75	20.4	85.35	
	20.7	9.73	84.9	20.7	84.5	
	23	9.95	84.68	23	84.28	
	27	10.07	84.56	27	84.16	
	31.5	9.8	84.83	31.5	84.43	
	33.5	9.59	85.04	33.5	84.64	
	36	9.56	85.07	36	84.67	
	39.4	9.42	85.21	39.4	84.81	
	42.4	9.25	85.38	42.4	84.98	
	46	8.8	85.83	46	85.43	
	50	8.74	85.89	50	85.49	
rew	45.2	8.91	85.72	45.2	85.32	
	53.5	7.93	86.7	53.5	86.3	
	58	4.97	89.66	58	89.26	
rpin	64.8	4.77	89.86	64.8	89.46	

				Yadkin River Basin, Wilkes County, North Carol Dani Wise					
YEAR 3 (20	/EAR 3 (2003)			HI=	95.23				
NOTEC	Survey Da	ita	FLEV 1	REVISED	REVISED				
NUTES	<u>51A</u>	<u>rə</u>		SIA					
	U 11	1.00	01.01 06.47	U 4 4	09.40 00.05				
	14	0./0 0./E	00.4/	14	00.20 97 56				
	22	9.40 0.50	00.10	22	01.JO 87 12				
	29	9.00	00.00 85.02	29	86.80				
	36	10.21	84.28	36	86.06				
	40	11 33	04.20 83 Q	30 40	85.68				
	40	11.64	83.59	40	85.37				
	48	11.86	83.37	48	85 15				
	51.5	12 15	83.08	51.5	84.86				
	54	12.41	82.82	54	84.60				
	58	13.01	82.22	58	84.00				
	61	13.72	81.51	61	83.29				
	66	14.75	80.48	66	82.26				
	70	15.37	79.86	70	81.64				
	73.5	15.25	79.98	73.5	81.76				
	76.5	14.49	80.74	76.5	82.52				
rew	82.4	12.62	82.61	82.4	84.39				
	85	10.39	84.84	85	86.62				
tob	92	5.65	89.58	92	91.36				
tpin	100	5.92	89.31	100	91.09				

Cross Section R4-XSEC 6 RIFFLE					STONE MTN RESTORATION Yadkin River Basin, Wilkes County, North Carolin Dani Wise		
YEAR 3 (2003)		HI = 95.23					
	Survey	Data		ADJUSTEI	ADJUSTED		
NOTES	SIA	FS	ELEV	SIA	ELEV		
lpin	0	2.45	92.78	0	96.64		
	5	2.68	92.55	5	90.41		
ltob	8.5	3.4	91.83	8.5	95.69		
	11.5	1.35	87.88	11.5	91.74		
ew	13	9.44	85.79	13	89.65		
	13.5	11.34	83.89	13.5	87.75		
	16.5	11.47	83,76	16.5	87.62		
	21	10.55	84.68	21	88.54		
	24.6	10.19	85.04	24.6	88.9		
	30.2	9.93	85.3	30.2	89.16		
	36	9.54	85.69	36	89.55		
	40	9.74	85.49	40	89.35		
rew	41.8	9.62	85.61	41.8	89.47		
	43	9	86.23	43	90.09		
	48	7.45	87.78	48	91.64		
rtob	53.7	4.59	90.64	53.7	94.5		
	60	4.16	91.07	60	94.93		
	64	4.15	91.08	64	94.94		
	66.4	4.32	90.91	66.4	94.77		

Cross Sec	tion R4-X	SEC7 PC	DOL	۶ ۲ ۲	STONE MTN RESTORATION Yadkin River Basin, Wilkes County, North Carolina Dani Wise			
YEAR 3 (2003)			HI =	100				
Survey Data		ADJUSTEIADJUSTED						
NOTES	STA	FS	ELEV	STA	ELEV			
	0	3.49	96.51	0	95.75			
	7	3.77	96.23	7	95.47			
	15	4.23	95.77	15	95.01			
	25	5	95	25	94.24			
ew	36.9	6.86	93.14	36.9	92.38			
	42	7.74	92.26	42	91.5			
W	50.2	9.04	90.96	50.2	90.2			
NS	55	6.89	93.11	55	92.35			
	55.2	8.56	91.44	55.2	90.68			
	56.5	7.54	92.46	56.5	91.7			
rew	58	6.9	93.1	58	92.34			
	60	5.95	94.05	60	93.29			
	61.2	4.75	95.25	61.2	94.49			
	62.8	2.7	97.3	62.8	96.54			
	63.5	2.39	97.61	63.5	96.85			
tpiw	66	2.09	97.91	66	97.15			
hniw	66	2.19	97.81	66	97.05			

APPENDIX C

VEGETATION MONITORING DATA YR 2003 SURVEY
Appendix C Stone Mountain Vegetation Survey: Year 3 Survey Dates: 7-10-03

BARE ROOT PLOTS								
Reach	Plot #	Live/Total Stems	% survivability	% Herbaceous Cover	Natural Regeneration (Stems)			
2	1	1/5	20	>90	44			
4	2	20/20	100	>90	153			
4	3	6/6	100	>90	94			
4	4	6/6	100	>90	>300			

LIVE STAKE PLOTS							
Reach	Plot #	Live/Total Stems	% Survivability	Natural Regeneration (Stems)			
2	1	4/6	67	18			
2	2	12/22	55	67			
2	3	2/15	13	13			
4	1	3/15	20	23			
4	2	0/0	0	0			
4	3	13/22	60	51			
4	4	4/7	57	40			
4	5	1/1	100	15			

APPENDIX D

PHOTO REFERENCE POINTS YR 2003 SURVEY

